• Title/Summary/Keyword: ferritin gene

Search Result 37, Processing Time 0.026 seconds

Isolation and Characterization of a Cdna ( Fp 1 ) Encoding the Iron Storage Protein in Red Pepper ( Capsicum annuum L. )

  • Kim, Ho-Young;Lee, Young-Ok;Noh, Ill-Sup;Kang, Hee-Wan;Kameya, Toshiaki;Saito, Takashi;Kang, Kwon-Kyoo
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 1998
  • A cDNA Fragment encoding iron storage protrin generated by polymerase chain reaction(PCR) using highly conserved regions of ferritin related genes were used to sereen a red pepper cDNA library. cDNA clone was designated as Fp1. Fp1 clone contatines a 5' nontranslated region of 51dp containing stop conds. Down stream from 5' UTP. an open reading frame of 750bp was observed. followed by a 3' UTR of 272bp. The deduces amino acid sequence of red pepper protein(Fp1) showed 84%, 48% and 36% identity with soybean(SolC). human(HuL H) and horse spleen(HoS-L) ferritin mRNA accumulation in response to iron. Ferritin mRNA accumulation was transient and particularly abundant in leaves. reaching a maxmum at 12h. The level of ferritin mRNA in roots was affected to a lesser extent than in leaves.

  • PDF

형질전환 식물을 이용한 phytoremediation

  • Kim, Hyang-Mi;Gwon, Tae-Ho;Yang, Mun-Sik
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.177-180
    • /
    • 2001
  • Tobacco plants were transformed by A. tumefaciens harboring human ferritin gene and they were subjected to investigate for the expression of transformed gene as well as heavy metal accumulation. Seed from self-fertilized transgenic plants was germinated on media containing toxic level of Cd, Cu, Zn, Fe, Mn and scored for tolerance to this heavy metals. There is difference in growth rate between transgenic and control plants, especially Cd, Cu. And transgenic plants accumulated more heavy metals than control plants.

  • PDF

Gene Expression and Iron Accumulation in Progeny of Transformants Introduced Fp1 Gene Encoding the Iron Storage Protein in Red Pepper (Capsicum annuum L.)

  • Kang, Kwon-Kyoo;Kim, Young-Ho
    • Plant Resources
    • /
    • v.4 no.1
    • /
    • pp.26-30
    • /
    • 2001
  • To improve the iron content of red pepper, we have transferred the entire coding sequence of the ferritin gene(Fpl) into Capsicum annuum (L. cv. Chungyang and Bukang) by Agrobacterium mediated transformation. Transformants were found to contain the Fp1 gene at up to three loci, increased distinct iron content changes. In transgenic plants, iron content was as much as 7-fold to 8-folds greater than that of their untransformed counterparts. Furthermore, the Rl progenies from transformant(A7, A8) co-segregated into a 15:1 ratio for both Kanamycin resistance and genotype of high iron.

  • PDF

Screening of Differentially Expressed Genes by Desferrioxamine or Ferric Ammonium Citrate Treatment in HepG2 Cells

  • Park, Jong-Hwan;Lee, Hyun-Young;Roh, Soon-Chang;Kim, Hae-Yeong;Yang, Young-Mok
    • BMB Reports
    • /
    • v.33 no.5
    • /
    • pp.396-401
    • /
    • 2000
  • A differential display method is used to identify novel genes whose expression is affected by treatment with ferric ammonium citrate (FAC) or desferrioxamine (DFO), an iron chelating agent in the human hepatoblastoma cell line (HepG2). These chemicals are known to deplete or increase the intracellular concentration of iron, respectively. Initially, we isolated seventeen genes whose expressions are down- or up regulated by the treatment of the chemicals, as well as their four differentially expressed genes that are designated as clone-1, -2, -3, and -4. These are further characterized by cDNA sequencing and Northern blot analysis. Through the cDNA sequencing, as well as comparing them to genes published using the NCBI BLAST program, we identified the sequence of the clone-1 that is up-regulated by the treatment of DFO. It is identical to the human insulin-like growth factor binding protein-1 (IGFBP-1). This suggests that the IGFBP-1 gene in the HepG2 cell is up-regulated by an iron depletion condition. Also, the expression of the clone-3 and -4 is up-regulated by FAC treatment and their eDNA sequences are identical to the human ferritin-fight chain and human NADH-dehydrogenase, respectively. However, the sequence of the clone-2 has no significant homology to any other known gene. Therefore, we suggest that changes of the cellular iron level in the HepG2 cell affects the transcription of cellular genes. This includes human IGFBP-1, ferritin-fight chain, and NADH-dehydrogenase. Regulation of these gene expressions may have an important role in cellular functions that are related to cellular iron metabolism.

  • PDF

A Possible Relation of the Helicobacter pylori pfr Gene to Iron Deficiency Anemia? (Helicobacter pylori 연관 철분 결핍성 빈혈과 H. pylori pfr 유전자 다형성과의 관련성)

  • Lee, Ji-Eun;Choe, Yon-Ho;Hwang, Tae-Sook
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.4 no.1
    • /
    • pp.28-33
    • /
    • 2001
  • Purpose: H. pylori infection is thought to contribute to iron-deficiency anemia, especially during puberty. The ferritin protein Pfr of H. pylori is homologous to eukaryotic and prokaryotic ferritins. The purpose of this study was to analyze the H. pylori pfr status in gastric biopsy specimens according to clinical data, including antral gastritis with or without iron-deficiency anemia. Methods: A total of 26 H. pylori-positive patients aged from ten to 18 years were categorized into subgroups based on the presence or absence of iron-deficiency anemia. All of them had antral gastritis. Sixteen patients were proved to have iron-deficiency anemia by hematological study, two of which had a duodenal ulcer. The other ten patients showed normal hematological findings. DNA isolation was performed from each of the gastric biopsy specimens. PCR amplification of the pfr gene coding was done using two sets of primers. The pfr region, 501 bp, was generated by linking the sequences of the two PCR products. The nucleotide and protein sequences were compared between the pfr regions from Korean H. pylori strains and the NCTC 11638, 26695, and J99 strain, which were obtained from the Genbank. Sequence comparisons were also performed for the pfr regions between the iron-deficiency anemia (+) and (-) groups. Results: Analysis of the complete coding region of pfr gene revealed three sites of mutation. The Ser39Ala mutation was found in 100% (26/26), Gly111Asn in 26.9% (7/26), and Gly82Ser in 11.5% (3/26). There were no significant differences in the mutations of the pfr regions between the iron deficiency anemia (+) and (-) groups. Conclusion: The mutation in the pfr gene did not relate with the clinical phenotype, iron deficiency anemia. Further studies are needed on the aspects of host side or other complex factors to elucidate anemia. Further studies are needed on the aspects of host side or other complex factors to elucidate the mechanisms by which the H. pylori infection might lead to iron deficiency anemia.

  • PDF

Cellular Iron Uptake from Aqueous Solutions depending on Reaction Conditions by genetically engineered Saccharomyces cerevisiae (재조합 Saccharomyces cerevisiae에 있어서 반응조건에 따른 수용성 철의 생체 흡수)

  • Kim Sang-Jun;Chang Yu-Jung;Park Chung-Ung;Jeong Yong-Seob;Kim Kyung-Suk
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.441-445
    • /
    • 2004
  • Cellular iron uptake was performed in the yeast Saccharomyces cerevisiae that transformed with human ferritin H- and L-chain genes. The recombinant yeasts were enriched in YEP medium supplemented with $2\%$ galactose for 3 days and the iron uptake was followed by incubating the cells with iron in 20 mM MOPS buffer (pH 6.5). The reactions were examined under different conditions including the iron compounds of Fe(II) and Fe(III), the concentration of iron, the concentration of cells and the reaction time. From our results, the recombinant yeast YGH2 producing H-chain ferritin showed higher cellular iron concentration at the cell concentration of 100 mg/ml than 200 mg/ml. Iron presented as Fe(II) rather than Fe(III) was taken up more efficiently. Iron uptake increased slightly when iron was added up to 14.3 mM Fe(II) and then its cellular iron concentration was $16.7{\pm}0.7\;{\mu}mol/g$ cell wet wt. In addition, the iron uptake reaction reached to maximum at about 2 hr incubation.

Study for Detection of Glyphosate Tolerant Soybean Using PCR (PCR을 이용한 glyphosate 저항성 콩의 검출법에 관한 연구)

  • Kim, Hyun-Joong;Park, Sun-Hee;Kim, Hae-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.521-524
    • /
    • 2001
  • A method using PCR was developed for the monitoring of glyphosate tolerant soybean (GTS) produced by the DNA recombination technique. We designed 3 pairs of specific oligonucleotide primers based on the gene sequences inserted in soybean and in lectin and ferritin genes as internal standards. Template DNAs were isolated from soybeans by the modified hexadecyl trimethyl ammonium bromide (CTAB)method and used for PCR with different primer sets. PCR, used with specific primer sets for GTS detection, showed the amplified DNA fragments with GTS template DNA but no product showed with non-GTS template. PCR amplified products were confirmed by DNA sequencing and were detected for up to 0.05% of GTS template DNA.

  • PDF

Mechanism of Metronidazole Resistance Regulated by the fdxA Gene in Helicobacter pylori. (헬리코박터 파일로리에서 fdxA 유전자에 의한 메트로니다졸 내성 조절 기전 연구)

  • Nam, Won-Hee;Lee, Sun-Mi;Kim, Eun-Sil;Kim, Jin-Ho;Jeong, Jin-Yong
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.723-727
    • /
    • 2007
  • Resistance to metronidazole in Helicobacter pylori results from inactivation of rdxA and frxA, the chromosomal genes for a nitroreductase that normally converts metronidazole from prodrug to bactericidal agent. Two types of metronidazole susceptible strains had been found distinguishable by their apparent levels of frxA expression. Most common in the populations we had studied were strains that required only rdxA inactivation to become resistant to moderate levels of metronidazole(type I strains). The second strain type required inactivation of both frxA and rdxA to become resistance to metronidazole(type II strains): this was linked to a relatively high level of frxA gene transcription in the type II strains. The fdxA gene regulated fdxA as well as rdxA gene. Thus, to study the function of fdxA as a regulatory gene we constructed a null mutant of fdxA in H. pylori genome and identified over-and under-expressed proteins by fdxA using two-dimensional(2-D) electrophoresis and MALDI-TOP-MS. There were four over-expressed proteins in fdxA mutant; nifU-like protein(HP0221), frxA(HP0642), nonheme ferritin(HP0653), and hypothetical protein(HP0902). Three under-expressed proteins were also identified in fdxA mutant, including 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (HP0089), (3R)-hydroxymyristoyl ACP dehydratase(HP1376), and thioredoxin(HP1458).

Identification of Differentially Expressed Genes Related to Intramuscular Fat Development in the Early and Late Fattening Stages of Hanwoo Steers

  • Lee, Seung-Hwan;Park, Eung-Woo;Cho, Yong-Min;Kim, Sung-Kon;Lee, Jun-Heon;Jeon, Jin-Tae;Lee, Chang-Soo;Im, Seok-Ki;Oh, Sung-Jong;Thompson, J.M.;Yoon, Du-Hak
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.757-764
    • /
    • 2007
  • Marbling of cattle meat is dependent on the coordinated expression of multiple genes. Cattle dramatically increase their intramuscular fat content in the longissimus dorsi muscle between 12 and 27 months of age. We used the annealing control primer (ACP)-differential display RT-PCR method to identify differentially expressed genes (DEGs) that may participate in the development of intramuscular fat between early (12 months old) and late fattening stages (27 months old). Using 20 arbitrary ACP primers, we identified and sequenced 14 DEGs. BLAST searches revealed that expression of the MDH, PI4-K, ferritin, ICER, NID-2, WDNMI, telethonin, filamin, and desmin (DES) genes increased while that of GAPD, COP VII, ACTA1, CamK II, and nebulin decreased during the late fattening stage. The results of functional categorization using the Gene Ontology database for 14 known genes indicated that MDH, GAPD, and COP VII are involved in metabolic pathways such as glycolysis and the TCA cycle, whereas telethonin, filamin, nebulin, desmin, and ACTA1 contribute to the muscle contractile apparatus, and PI4-K, CamK II, and ICER have roles in signal transduction pathways regulated by growth factor or hormones. The final three genes, NID-2, WDNMI, and ferritin, are involved in iron transport and extracellular protein inhibition. The expression patterns were confirmed for seven genes (MDH, PI4-K, ferritin, ICER, nebulin, WDNMI, and telethonin) using real-time PCR. We found that the novel transcription repressor ICER gene was highly expressed in the late fattening stage and during bovine preadipocyte differentiation. This information may be helpful in selecting candidate genes that participate in intramuscular fat development in cattle.