• Title/Summary/Keyword: ferrite-austenite

Search Result 209, Processing Time 0.026 seconds

Effects of Microalloying Elements on Microstructures and Toughness of Simulated HAZ in Quenched and Tempered Steels

  • Chang, W.S.;Yoon, B.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • A series of experiments has been carried out to investigate the effect of titanium, boron and nitrogen on the microstructure and toughness of simulated heat affected zone (HAZ) in quenched and tempered (QT) type 490MPa yield strength steels. For acquiring the same strength level, the carbon content and carbon equivalent could be lowered remarkably with a small titanium and boron addition due to the hardenability effect of boron during quenching process. Following the thermal cycle of large heat input, the coarsened grain HAZ (CGHAZ) of conventional quenched and tempered (QT) type 490MPa yield strength steels exhibited a coarse bainitic or ferrite side plate structure with large prior austenite grains. While, titanium and boron bearing QT type 490MPa yield strength steels were characterized by the microstructure in the CGHAZ, consisting mainly of the fine intragranular ferrite microstructure. Toughness of the simulated HAZ was mainly controlled by the proper Ceq level, and the ratio of Ti/N rather than titanium and nitrogen contents themselves. In the titanium­boron added QT steels, the optimum Ti/N ratio for excellent HAZ toughness was around 2.0, which was much lower than the known Ti/N stoichiometric ratio, 3.4. With reducing Ti/N ratio from the stoichiometric ratio, austenite grain size in the coarse grained HAZ became finer, indicating that the effective fine precipitates could be sufficiently obtained even with lower Ti/N level by adding boron simultaneously. Along with typical titanium carbo­nitrides, various forms of complex titanium­ and boron­based precipitates, like TiN­MnS­BN, were often observed in the simulated CGHAZ, which may act as stable nuclei for ferrite during cooling of weld thermal cycles

  • PDF

Formation of Ferrite-Cementite Microstructure by Strain Induced Dynamic Transformation in Medium Carbon Steels (중 탄소강의 변형유기 동적변태에 의한 페라이트-시멘타이트 형성거동에 대한 연구)

  • Lee Y. H.;Lee D. L.;Choo W. Y.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.211-214
    • /
    • 2004
  • In the present study, the effect of SIDT (Strain Induced Dynamic Transformation) on the microstructure of medium carbon steels was investigated to develop spheroidized annealing-free steel wire rods. When $0.45\%C$ steels were hot-deformed under the conditions of heavy reduction at low temperatures, a microstructure quite different from conventional ferrite-pearlite structure was obtained. It was considered that this ferrite-cementite microstructure was obtained because very small retained austenite grains existing between fine SIDT ferrites prefer to transform to cementite and ferrite instead of pearlite during cooling. Through the present study, $0.45\%C$ steels containing ferrite-cementite (FC) structure instead of ferrite-pearlite structure was obtained in as-rolled state by introducing SIDT. The specimen containing the FC structure was much softer than that containing conventional ferrite-pearlite structure. Therefore, it is concluded that deforming medium carbon steels under the conditions of SIDT is a very powerful method to obtain soft steel wire rods which could be cold-forged without softening heat-treatment

  • PDF

Analysis of Cracking Phenomenon Occurring During Hot Rolling of Fe-23Mn High-manganese Steels with Different Aluminium and Carbon Contents (알루미늄과 탄소 함량에 따른 Fe-23Mn계 고망간강의 열간 압연 시 발생하는 균열 현상 분석)

  • Lim, Hyeon-Seok;Lee, Seung-Wan;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.176-180
    • /
    • 2016
  • In this study, a microstructural investigation was conducted on the cracking phenonmenon occurring during hot rolling of Fe-23Mn high-manganese steels with different aluminium and carbon contents. Particular emphasis was placed on the phase stability of austenite and ferrite dependent on the chemical composition. An increase in the aluminum content promoted the formation of ferrite band structures which were easily deformed or cracked. In the steels containing high carbon contents of 0.4 wt.% or higher, on the other hand, the volume fraction and thickness of ferrite bands decreased and thus the cracking frequency was significantly reduced. Based on these findings, it is said that the microstructural evolution occurring during hot rolling of high-manganese steels with different aluminium and carbon contents plays an important role in the cracking phenomenon. To prevent the cracking, therefore, the formation of second phases such as ferrite should be minimized during the hot rolling by the appropriate control of the chemical composition and process parameters

Effect of weld thermal cycle on the HAZ toughness and microstructure of a Ti-oxide bearing steel (Ti산화물강의 HAZ인성 및 미세조직에 미치는 용접열 cycle의 영향)

  • 정홍철;한재광;방국수
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.46-56
    • /
    • 1996
  • HAZ impact toughness of Ti-oxide steel was investigated and compared to that of a conventional Ti-nitride steel. Toughness variations of each steel with weld peak temperatures and cooling rates were interpreted with microstructural transformation characteristics. In contrast to Ti-nitride steel showing continuous decrease in HAZ toughness with peak temperature, Ti-oxide steel showed increase in HAZ toughness above $1400^{\circ}C$ peak temperature. The HAZ microstructure of the Ti-oxide steel is characterized by the formation of intragranular ferrite plate, which was found to start from Ti-oxide particles dispersed in the matrix of the steel. Large austenite grain size above $1400^{\circ}C$ promoted intragranular ferrite plate formation in Ti-oxide steel while little intragranular ferrite plate was formed in Ti-nitride steel because of dissolution of Ti-nitrides. Ti-oxides in the Ti-oxide steel usually contain MnS and have crystal structures of TiO and/or $Ti_2O_3$.

  • PDF

Microstructural engineering of dual phase steel to aid in bake hardening

  • Banerjee, M.K.
    • Advances in materials Research
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Low carbon steel of composition 0.05C - 0.18 Mn - 0.012 Si is intercritically annealed at temperatures $750^{\circ}C$, $775^{\circ}C$ and $800^{\circ}C$. The equilibrated alloys of different amounts of austenite with varying carbon contents are quenched in iced water. The same alloys are subcritically annealed at $675^{\circ}C$ and $700^{\circ}C$ for varying periods of times; the subcritically annealed alloy samples are quenched in iced water. Optical, scanning electron and transmission electron microscopy are carried out for all the samples. The dislocation structure, its distribution and density present in the above prepared duplex ferrite martensite steels are studied. The martensites are found to be highly dislocated due to lattice invariant deformation. At the same time ferrite adjoining the martensite areas also exhibits quite a high dislocation density. The high dislocation density is favorable for strain ageing and hence bakes hardenability. EDS analyses were carried out for both martensite and ferrite phases; it is found that the degree of supersaturation in ferrite together with carbon content in martensite varies with the process parameters. The microhardness test results show that the hardness values of different phases differ appreciably with process parameters. The microstructures and the corresponding microanalyses reveal that differently processed steels contain phases of varying compositions and different distribution.

Comparative Analysis of Strengthening with Respect to Microstructural Evolution for 0.2 Carbon DP, TRIP, Q&P Steels

  • Jin, Jong-Won;Park, Yeong-Do;Nam, Dae-Geun;Lee, Seung-Bok;Kim, Sung-Il;Kang, Nam-Hyun;Cho, Kyung-Mox
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.293-299
    • /
    • 2009
  • The microstructures and mechanical properties of Dual Phase (DP), Transformation-Induced Plasticity (TRIP), and Quenching & Partitioning (Q&P) steels were investigated in order to define the strengthening mechanism of 0.2 C steel. An intercritical annealing between Ac1 and Ac3 was conducted to produce DP and TRIP steel, followed by quenching the DP and TRIP steel being quenched at to room temperature and by the TRIP steel being austemperingaustempered-air cooling cooled the steel toat room temperature, respectively. The Q&P steel was produced from full austenization, followed by quenching to the temperature between $M_s$ and $M_f$, and then enriching the carbon to stabilize the austenite throughout the heat treatment. For the DP and TRIP steels, as the intercritical annealing temperature increased, the tensile strength increased and the elongation decreased. The strength variation was due to the amount of hard phases, i.e., martensite and bainite, respectively in the DP and TRIP steels. It was also found that the elongation also decreased with the amount of soft ferrite in the DP and TRIP steels and with the amount of the that was retained in the austenite phasein the TRIP steel, respectively for the DP and TRIP steels. For the Q&P steel, as the partitioning time increased, the elongation and the tensile strength increased slightly. This was due to the stabilized austenite that was enriched with carbon, even when the amount of retained austenite decreased as the partitioning time increased from 30 seconds to 100 seconds.

Microstructures and Tensile Properties by Multi-step Isothermal Heat Treatment in Conventional TRIP Steel (상용 TRIP강의 다단 항온 변태 열처리에 따른 미세조직 및 인장 특성)

  • Kim, Kyeong-Won;Lee, Chang-Hoon;Kang, Jun-Yun;Lee, Tae-Ho;Cho, Kyung-Mox
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.3
    • /
    • pp.103-108
    • /
    • 2016
  • In recent years, TRIP steels which are composed of ferrite, bainite, and retained austenite have drawn much attention for automotive sheets due to excellent combination of strength and ductility. The effect of two-step isothermal heat treatment of bainitic transformation on microstructures, especially retained austenites and tensile properties in the conventional TRIP steel was investigated. A two-step isothermal heat treatment, in which 50% bainitic transformation occurred at high temperature, followed by bainitic transformation at low temperature, improves tensile properties, resulting from enhanced mechanical stability of retained austenite against external plastic deformation due to refinement of retained austenites, compared to single-step isothermal heat treatment.

Effect of Austenitizing Temperature on the Hardenability and Tensile Properties of Boron Steels (오스테나이트화 온도에 따른 보론강의 경화능과 인장 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.9
    • /
    • pp.497-502
    • /
    • 2015
  • The hardenability of boron steel specimens with different molybdenum and chromium contents was investigated using dilatometry and microstructural observations, and then was quantitatively measured at a critical cooling rate corresponding to 90 % martensite hardness obtained from a hardness distribution plotted as a function of cooling rate. Based on the results, the effect of an austenitizing temperature on the hardenability and tensile properties was discussed in terms of segregation and precipitation behavior of boron atoms at austenite grain boundaries. The molybdenum addition completely suppressed the formation of pro-eutectoid ferrite even at the slowest cooling rate of $0.2^{\circ}C/s$, while the chromium addition did at the cooling rates above $3^{\circ}C/s$. On the other hand, the hardenability of the molybdenum-added boron steel specimens decreased with an increasing austenitizing temperature. This is associated with the preferred precipitation of boron atoms since a considerable number of boron atoms could be concentrated along austenite grain boundaries by a non-equilibrium segregation mechanism. The secondary ion mass spectroscopy results showed that boron atoms were mostly segregated at austenite grain boundaries without noticeable precipitation at higher austenitization temperatures, while they formed as precipitates at lower austenitization temperatures, particularly in the molybdenum-added boron steel specimens.

Effect of Quenching Medium on the Mechanical Properties of ADI Treated GCD 50 (GCD 50의 ADI처리시 기계적 성질에 미치는 퀜칭 매질의 영향)

  • Kim, H.G.;Oh, I.S.;Kim, H.J.;Shin, K.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.3
    • /
    • pp.137-143
    • /
    • 2008
  • Effect of quenching medium on the mechanical properties of ductil iron GCD 50 has been investigated using ADI treated specimens. The specimens have been austenitized at $900^{\circ}C$ for 2 hours, followed by controlled cooling to $800^{\circ}C$ under the cooling rate of $0.05^{\circ}C/sec$, then austempered at $380^{\circ}C$, $330^{\circ}C$, $280^{\circ}C$ and $230^{\circ}C$ for 1 hour. The specimens treated in the salt of 5% water were found to have higher tensile strength than that of the normal salt bath. Elongation and impact energy increased in proportion to the increase of retained austenite volume fraction. The increase of cooling rate of the salt by the addition of 5% water to the salt resulted in the increase of retained austenite volume fraction and the formation of fine bainitic ferrite.

Quantitative analysis of Precipitate Using Transformation in Nb Added Low Carbon Steels (Nb 첨가 저합금강의 상변태를 이용한 석출물 정량분석)

  • Kang, H.C.;Lee, S.H.;Kim, N.S.;Lee, K.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.1
    • /
    • pp.10-15
    • /
    • 2003
  • In Nb, V and Ti added steels, carbo-nitrides are formed due to their strong interaction with C and N. The formation of carbo-nitrides has an important role to control the microstructure as well as mechanical properties by grain size refinement and precipitation hardening. However, the quantitative analysis of distribution of precipitates and the effect of precipitates on the phase transformation and mechanical properties are still far from satisfactory. In this study, the quantitative analysis of precipitates in austenite was investigated using the fact that the formation of precipitates in Nb, V and Ti added steels accelerates austenite/ferrite transformation. The formation of precipitates was controlled by adjusting holding temperature and time in austenite region, transformed Volume fractions were measured by dilatometer during slow cooling, Iso-precipitation kinetics were determined by comparing 5% and 50% volumes transformed at various conditions respectively. The result was compared with the calculated.