• 제목/요약/키워드: ferrite substrate

검색결과 44건 처리시간 0.028초

페라이트 도금법에 의한 $Ni_xFe_{3-x}O_4$ 박막의 제조와 자기적 성질 (Preparation of$Ni_xFe_{3-x}O_4$ Films by the Ferrite Plating and Their Magnetic Properties)

  • 하태욱;이정식;김일원
    • 한국자기학회지
    • /
    • 제8권5호
    • /
    • pp.295-299
    • /
    • 1998
  • 페라이트 도금 방법은 진공이 불필요하며 저온(<10$0^{\circ}C$)에서 페라이트 박막을 제작할 수 있다. 이 방법으로 기판온도 8$0^{\circ}C$, 산화용액의 pH 7.1~8.8 영역에서 모두 스피넬 구조의 NixFe3-xO4 (x=0.162~0.138) 박막을 얻었다. 이들은 열처리를 하지 않았음에도 불구하고 결정성이 우수한 다결정의 박막을 얻었다. 박막의 성장속도는 산화용액의 pH가 7.1에서 8.8까지 변함에 따라 성장속도가 143$\AA$/min에서 255 $\AA$/min 까지 증가하였다. 산화용액의 pH가 증가할수록 입경의 크기가 증가하고, 보자력은 감소하였다.

  • PDF

Fe3O4/CoFe2O4 superlattices; MBE growth and magnetic properties

  • Quang, Van Nguyen;Shin, Yooleemi;Duong, Anh Tuan;Nguyen, Thi Minh Hai;Cho, Sunglae;Meny, Christian
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.242-242
    • /
    • 2016
  • Magnetite, Fe3O4, is a ferrimagnet with a cubic inverse spinel structure and exhibits a metal-insulator, Verwey, transition at about 120 K.[1] It is predicted to possess as half-metallic nature, 100% spin polarization, and high Curie temperature (850 K). Cobalt ferrite is one of the most important members of the ferrite family, which is characterized by its high coercivity, moderate magnetization and very high magnetocrystalline anisotropy. It has been reported that the CoFe2O4/Fe3O4 bilayers represent an unusual exchange-coupled system whose properties are due to the nature of the oxide-oxide super-exchange interactions at the interface [2]. In order to evaluate the effect of interface interactions on magnetic and transport properties of ferrite and cobalt ferrite, the CoFe2O4/Fe3O4 superlattices on MgO (100) substrate have been fabricated by molecular beam epitaxy (MBE) with the wave lengths of 50, and $200{\AA}$, called $25{\AA}/25{\AA}$ and $100{\AA}/100{\AA}$, respectively. Streaky RHEED patterns in sample $25{\AA}/25{\AA}$ indicate a very smooth surface and interface between layers. HR-TEM image show the good crystalline of sample $25{\AA}/25{\AA}$. Interestingly, magnetization curves showed a strong antiferromagnetic order, which was formed at the interfaces.

  • PDF

Excellent Crystallinity of Ba Ferrite Layers Deposited on Pt(111) Underlayers

  • Matsushita, Nobuhiro;Feng, Jie;Watanabe, Koh;Ichinose, Makoto;Nakagawa, Shigeki;Naoe, Masahiko
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.315-317
    • /
    • 2000
  • A magnetoplumbite type of Ba ferrite(BaM) layers were deposited on Pt(111) and Pt(200) layers, and their c-axis orientation and magnetic characteristics were compared each other. The as-deposited BaM layer on Pt(111) one at the substrate temperature $T_s$ above $500^{\circ}C$ revealed remarkable c-axis orientation. The saturation magnetization 4$\piM_s$ and the perpendicular coercivity $H_{c⊥}$ of the films as-deposited at $T_s$ of $600^{\circ}C$ were 4.0kG and 2.5kOe, respectively. On the other hand, BaM ferrite layer deposited on Pt(200) layer at $T_s$ as relatively low as $500^{\circ}C$ also revealed weak c-axis orientation as well as (107) one and the films as-deposited at $T_s$ of $600^{\circ}C$ exhibited 4$\piMs_{and}$ $H_{c⊥}$ of 2.8kG and 2.5kOe, respectively. It was suggested that although chemical activity of Pt surface was effective for the formation of BaM crystallites, the lattice matching was also important for obtaining BaM layer with good c-axis orientation and large perpendicular anisotropy.sotropy.

  • PDF

Yb:YAG 디스크 레이저로 표면 오버랩 용융된 냉간금형강, STD11의 미세조직과 경도 (Microstructure and Hardness of Yb:YAG Disc Laser Surface Overlap Melted Cold Die Steel, STD11)

  • 이광현;최성원;윤중길;오명환;김병민;강정윤
    • Journal of Welding and Joining
    • /
    • 제33권5호
    • /
    • pp.53-60
    • /
    • 2015
  • Laser surface Melting Process is getting hardening layer that has enough depth of hardening layer as well as no defects by melting surface of substrate. This study used CW(Continuous Wave) Yb:YAG and STD11. Laser beam speed, power and beam interval are fixed at 70mm/sec, 2.8kW and 800um respectively. Hardness in the weld zone are equal to 400Hv regardless of melting zone, remelting zone overlapped by next beam and HAZ. Similarly, microstructures in all weld zone consist of dendrite structure that arm spacing is $3{\sim}4{\mu}m$, matrix is ${\gamma}$(Austenite) and dendrite boundary consists of ${\gamma}$ and $M_7C_3$ of eutectic phase. This microstructure crystallizes from liquid to ${\gamma}$ of primary crystal and residual liquid forms ${\gamma}$ and $M_7C_3$ of eutectic phase by eutectic reaction at $1266^{\circ}C$. After solidification is complete, primary crystal and eutectic phase remain at room temperature without phase transformation by quenching. On the other hand, microstructures of substrate consist of ferrite, fine $M_{23}C_6$ and coarse $M_7C_3$ that have 210Hv. Microstructures in the HAZ consist of fine $M_{23}C_6$ and coarse $M_7C_3$ like substrate. But, $M_{23}C_6$ increases and matrix was changed from ferrite to bainite that has hardness above 400Hv. Partial Melted Zone is formed between melting zone and HAZ. Partial Melted Zone near the melting zone consists of ${\gamma}$, $M_7C_3$ and martensite and Partial Melted Zone near the HAZ consists of eutectic phase around ${\gamma}$ and $M_7C_3$. Hardness is maximum 557Hv in the partial melted zone.

VCR 헤드 제조시 $SiO_2$박막과 유리의 계면 결함 (Interfacial Defects in $SiO_2$-Glass Bond During VCR Head Fabrication)

  • 윤능구;황재웅;고경현;안재환;제해준;홍국선
    • 한국재료학회지
    • /
    • 제4권1호
    • /
    • pp.31-36
    • /
    • 1994
  • Mn-Zn ferrite를 가공하여 VCR헤드의 제조과정에서 비자성체 gap용 $SiO_{2}$증착층과 유리와의 접합시 유리내에 기포 형태의 결함이 발생하는 경우가 있다. 기판의 조도나 $SiO_{2}$의 증착속도의 영향을 분석한 결과, 기포의 생성원인이 $SiO_{2}$ 증착층과 접합유리의 융착시 계면에 존재하는 요철의 불완전한 충진에 의한 것으로 나타났다. 따라서 이러한 기포생성을 억제시키는 위해서는 기판을 최대한 경면 연마시켜 표면조도를 작게하고 $SiO_{2}$증착속도를 조절함으로써 $SiO_{2}$증착층의 표면조도를 작게하여 유리 융착시 계변의 요철 크기를 작게해야 한다. 기판을 0.05$\mu\textrm{m}$알루미나 분말로 경면연마시키고, 10% Osub 2/분압을 갖는 Ar plasma상태하로 조절된 증착속도로 즈악된 $SiO_{2}$증착층과 접합유리의 융착시 기포가 전혀 발생치 않았다.

  • PDF

Development and Current Status of Gaseous Nitrocarburizing

  • Bell, Tom
    • 열처리공학회지
    • /
    • 제2권2호
    • /
    • pp.68-83
    • /
    • 1989
  • Physical metallurgy aspects of gaseous ferritic nitrocarburising are reviewed in the light of basic studies undertaken since 1975 which have illustrated inconsistencies between the iron-carbon-nitrogen ternary phase diagram at $570^{\circ}C$ and the experimental observation of the co-existence of the ${\varepsilon}$ carbonitride phase and ferrite. Thermodynamic investigations by Xu and Li together with those by Slycke et al are reviewed to illustrate compatability between a modified isothermal section of the Fe-C-N system and the formation and growth of a monophased ${\varepsilon}$ structure under a variety of processing conditions. The implications of the modified diagram in terms of innovations in industrial ferritic nitrocarburising practice are discussed, together with limitations on the control of the process. The importance of the developing technology of black nitrocarburising for enhanced wear, fatigue, and corrosion resistance is emphasised. Basic studies and industrial status of austenitic nitrocarburising treatments are also reviewed, which highlight the importance of substrate strengthening for high load bearing applications of anti-scuff thermochemical treatments.

  • PDF

Microstructure, Electrical Property and Nonstoichiometry of Light Enhanced Plating(LEP) Ferrite Film

  • 김 돈;이충섭;김영일
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권5호
    • /
    • pp.533-539
    • /
    • 1998
  • A magnetic film was deposited on a slide glass substrate from aqueous solutions of $FeCl_2$ and $NaNO_2$ at 363 K. XRD analysis showed that the film was polycrystalline magnetite $(Fe_{3(1-{\sigma})}O_4)$ without impurity phase. The lattice constant was 0.8390 nm. Mossbauer spectrum of the film could be deconvoluted by the following parameters: isomer shifts for tetrahedral $(T_d)$ and octahedral $(O_h)$ sites are 0.28 and 0.68 mm/s, respectively, and corresponding magnetic hyperfine fields are 490 and 458 kOe, respectively. The estimated chemical formula of the film by the peak intensity of Mossbauer spectrum was $Fe_{2.95}O_4$. Low temperature transition of the magnetite (Verwey transition) was not detected in resistivity measurement of the film. Properties of the film were discussed with those of pressed pellet and single crystal of synthetic magnetites. On the surface of the film, magnetite particles of about 0.2 μm in diameter were identified by noncontact atomic force microscopy (NAFM) and magnetic force microscopy (MFM).

이온빔 보조 증착법을 이용한 STS 316L 박막 합성에 관한 연구 (A Study on the Fabrication of STS 316L Films by Ion Beam Deposition with Ion Source)

  • 이준희;송요승;이건환;이구현;이득용;윤종구
    • 한국재료학회지
    • /
    • 제13권9호
    • /
    • pp.587-592
    • /
    • 2003
  • The thin films of 316L stainless steel were made on glass and S45C substrate by Ion beam assisted deposition with reactive atmosphere of argon and nitrogen. The films were deposited at the various conditions of ion beam power and the ratios of Ar/$N_2$gas. Properties of these films were analyzed by glancing x-ray diffraction method(GXRD), AES, potentiodynamic test, and salt spray test. The results of GXRD showed that austenite phase could be appeared by $N_2$ion beam treatment and the amount of austenite phase increased with the amount of nitrogen gas. The films without plasma ion source treatment had the weak diffraction peak of ferrite phase. But under the Ar plasma ion beam treatment, the strong diffraction peaks of ferrite phase were appeared and the grain size was increased from 12 to 16 nm. Potentiodynamic polarization test and salt spray test indicated that the corrosion properties of the STS 316L films with nitrogen ion source treatment were better than bulk STS 316L steel and STS 316L films with Ar ion source treatment.

페라이트 도금법에 의한 $M_xZn_{0.22}Fe_{2.78-x}O_4(M=Mn, Ni)$ 박막의 제조와 자기적 성질 (Preparation of $M_xZn_{0.22}Fe_{2.78-x}O_4(M=Mn, Ni)$ Films by the Ferrite Plating and Their Magnetic Properties)

  • 하태욱;유윤식;김성철;최희락;이정식
    • 한국자기학회지
    • /
    • 제10권3호
    • /
    • pp.106-111
    • /
    • 2000
  • 페라이트 도금 방법으로 M $n_{x}$Z $n_{0.22}$F $e_{2.78-x}$ $O_4$(x=0.00~0.08)와 N $i_{x}$Z $n_{0.22}$F $e_{*}$2.78-x/ $O_4$(x=0.00~0.15)의 스피넬 페라이트 박막을 제작하였다. 반응용액의 조성비 변화에 따라 형성된 박막의 조성비와 성장속도를 조사하였다. 제조한 시료들의 결정성과 미세구조는 x-선 회절분석과 전자현미경으로 조사하고, 시료의 자기적 성질을 진동 시료형 자력계를 사용하여 조사했다. 조성비 x가 증가함에 따라 격자상수는 M $n_{x}$Z $n_{0.22}$F $e_{2.78-x}$ $O_4$(x=0.00~0.08) 박막에서 증가하지만, N $i_{x}$Z $n_{0.22}$F $e_{2.78-x}$ $O_4$(x=0.00~0.15) 박막에서 감소한다. M $n_{x}$Z $n_{0.22}$F $e_{2.78-x}$ $O_4$(x = 0.00~0.08) 박막의 포화자화는 419 emu/㎤에서 394 emu/㎤ 의 값을 가져 N $i_{x}$Z $n_{0.22}$F $e_{2.78-x}$ $O_4$(x=0.00~0.15)의 $M_{s}$ 보다 높게 나타났다. 보다 높게 나타났다. 보다 높게 나타났다.

  • PDF

MBE Growth and Electrical and Magnetic Properties of CoxFe3-xO4 Thin Films on MgO Substrate

  • Nguyen, Van Quang;Meny, Christian;Tuan, Duong Ahn;Shin, Yooleemi;Cho, Sunglae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.370.1-370.1
    • /
    • 2014
  • Giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and magnetic random-access memory (MRAM) are currently active areas of research. Magnetite, Fe3O4, is predicted to possess as half-metallic nature, ~100% spin polarization (P), and has a high Curie temperature (TC~850 K). On the other hand, Spinel ferrite CoFe2O4 has been widely studies for various applications such as magnetorestrictive sensors, microwave devices, biomolecular drug delivery, and electronic devices, due to its large magnetocrystalline anisotropy, chemical stability, and unique nonlinear spin-wave properties. Here we have investigated the magneto-transport properties of epitaxial CoxFe3-xO4 thin films. The epitaxial CoxFe3-xO4 (x=0; 0.4; 0.6; 1) thin films were successfully grown on MgO (100) substrate by molecular beam epitaxy (MBE). The quality of the films during growth was monitored by reflection high electron energy diffraction (RHEED). From temperature dependent resistivity measurement, we observed that the Werwey transition (1st order metal-insulator transition) temperature increased with increasing x and the resistivity of film also increased with the increasing x up to $1.6{\Omega}-cm$ for x=1. The magnetoresistance (MR) was measured with magnetic field applied perpendicular to film. A negative transverse MR was disappeared with x=0.6 and 1. Anomalous Hall data will be discussed.

  • PDF