• Title/Summary/Keyword: ferrite & amorphous core

Search Result 5, Processing Time 0.023 seconds

A Study on the Transformer Design considering the Inrush Current Reduction in the Arc Welding Machine

  • Kim, In-Gun;Liu, Huai-Cong;Cho, Su-Yeon;Lee, Ju
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.374-378
    • /
    • 2016
  • The transformer used in an inverter type arc welding machine is designed to use high frequency in order to reduce its size and cost. Also, selecting core materials that fit frequency is important because core loss increases in a high frequency band. An inrush current can occur in the primary coil of transformer during arc welding and this inrush current can cause IGBT, the switching element, to burn out. The transformer design was carried out in $A_P$ method and amorphous core was used to reduce the size of transformer. In addition, sheet coil was used for primary winding and secondary winding coil considering the skin effect. This paper designed the transformer core with an air gap to prevent IGBT burnout due to the inrush current during welding and proposed the optimum air gap length.

Optimization of Powder Core Inductors of Buck-Boost Converters for Hybrid Electric Vehicles

  • You, Bong-Gi;Kim, Jong-Soo;Lee, Byoung-Kuk;Choi, Gwang-Bo;Yoo, Dong-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.527-534
    • /
    • 2011
  • In the present paper, the characteristics of Mega-Flux$^{(R)}$, JNEX-Core$^{(R)}$, amorphous and ferrite cores are compared to the inductor of buck-boost converters for Hybrid Electric Vehicles. Core losses are analyzed at the condition of 10 kHz sine wave excitations, and permeability fluctuations vs. temperature and magnetizing force will be analyzed and discussed. Under the specifications of the buck-boost converter for 20 kW THS-II, the power inductor will be designed with Mega-Flux$^{(R)}$ and JNEX-Core$^{(R)}$, and informative simulation results will be provided with respect to dc bias characteristics, core and copper losses.

The present technical condition and a trend of research for soft magnetic materials (연자성재료의 기술현황과 연구동향)

  • 양계준;박용관
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.76-92
    • /
    • 1996
  • 본 고에서는 대표적인 연자성재료인 Soft 페라이트, 퍼멀로이, 센더스트와 비정질 자성합금계의 특성과 용도를 살펴봄으로써 현재의 기술현황을 알아보고 그 문제점 해결과 특성개선을 위한 연구동향에 대하여 검토하여 보기로 한다. 또한 연자성재료 일반에 걸쳐 용도별 분류와 각 응용기술 분야에서의 기술동향 및 전망에 대하여 소개하고자 한다.

  • PDF

A Study of High-Quality Factor Solenoid-Type RF Chip Inductor Utilizing Amorphous $Al_2O_3$ Core Material (비정질 $Al_2O_3$ 코아 재료를 이용한 Solenoid 형태의 고품질 RF chip 인덕터에 관한 연구)

  • Lee, Jae-Wook;Jung, Young-Chang;Yun, Eui-Jung;Hong, Chol-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.6
    • /
    • pp.34-42
    • /
    • 2000
  • Recently, there is a growing need to develope small-size RF chip inductors operating to GHz to realize high-performance, micro-fabricated wireless communication products. For the development of high-performance RF chip inductors, however, the ferrite-based chip inductors can not be used above 300MHz due to the limitation of the permeability of this material. In this work, small-size, high-performance RF chip inductors utilizing amorphous $Al_2O_3$ core material were investigated. Copper (Cu) with 40${\mu}m$ diameter was used as the coils and the chip inductor size fabricated in this work is $2.1mm{\times}1.5mm{\times}1.0mm$. The external current source was applied after bonding Cu coil leads to gold pads electro-plated on the bottom edges of a core material. The composition of core materials was measured using a EDX. High frequency characteristics of the inductance (L), quality factor (Q), and impedance (Z) of developed inductors were measured using an RF Impedance/Material Analyzer (HP4291B with HP16193A test fixture). The developed inductors have the self-resonant frequency (SRF) of 1 to 3.5 GHz and exhibit L of 22 to 150 nH. The L of the inductors decreases with increasing the SRF. The Z of the inductors has the maximum value at the SRF and the inductors have the quality factor of 70 to 97 in the frequency range of 500 MHz to 1.5 GHz.

  • PDF

Fabrication of High Frequency Magnetic Characteristics Measurement System Using Digital Oscilloscope and Computer Remote Control (디지털 오실로스코프와 컴퓨터 제어기법을 이용한 고주파 자기특성 측정장치 제작)

  • 김기옥;이재복;송재성;민복기
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.6
    • /
    • pp.327-333
    • /
    • 1997
  • We designed and constructed the high frequency magnetic characteristics measurement system to measure core loss, B-H curve, permeability of toroidal ferrite core, amorphous core and various materials for high frequency application. The system consists of universal equipments such as digitizing oscilloscope, signal generator, power amplifier, PC in order to make upgrade easily. The power source is composed of waveform synthesizer and power amplifier ranging from DC to 20 MHz, and output signal H and B from sample core are digitized by oscilloscope with sampling rate 1 GS/ s per channel. Computer controls power source and oscilloscope, reads data from oscilloscope, displays analyzed waveform and saves data with file. The entire procedures finishes within few seconds.

  • PDF