• 제목/요약/키워드: ferric iron reduction

검색결과 34건 처리시간 0.025초

염화 제2철 농축 수용액으로부터의 액-액 추출에 의한 철과 니켈의 분리 (Separation of Iron and Nickel from Heavily Concentrated Aqueous Ferric Chloride Solution by Liquid-liquid Extraction)

  • 박무룡;김영욱;박재호;박진호
    • 청정기술
    • /
    • 제13권4호
    • /
    • pp.274-280
    • /
    • 2007
  • 본 연구에서는 염화 제2철 수용액의 재생 공정에 주로 쓰이고 있는 철환원법을 대체하기 위한 방법으로, 액-액 용매 추출법을 사용하여 수용액 내에 잔존해 있는 중금속인 Fe와 Ni을 분리 회수하는 공정을 개발하였다. Lab 실험을 통해 우선 염화 제2철 수용액으로부터 선택적으로 염화 제2철만을 추출할 수 있는 용매조건을 개발하였고, 그 결과를 사용하여 액-액 추출공정의 상업화 추진을 위한 pilot 공정 및 장치를 개발하였다. 또한 pilot test를 통하여 추출단과 역추출단의 단수를 결정할 수 있었고, 양산 공정에 적용할 수 있는 공정 데이터를 확보하였다.

  • PDF

엣칭용 염화제2철 폐액중의 니켈제거 (Removal of Nickel from the Etching Waste Solution of Ferric Chloride)

  • 도용일;정우원;이만호
    • 공업화학
    • /
    • 제7권4호
    • /
    • pp.614-622
    • /
    • 1996
  • 엣칭용 염화제2철 용액중의 효과적인 니켈제거에 관해 연구하였다. 전해철괴 또는 폐새도우마스크 철편을 사용하여 염화제2철을 염화제1철로 환원시킨후 용액중의 $Ni^{2+}$를 전해철 분말로 환원 석출시켰다. 최적의 실험조건하에서 초기 니켈의 농도가 1.0%일 때 니켈제거율은 99%이었고 초기 니켈의 농도가 0.1%일 때 니켈제거율은 98%이었다. 염화제2철의 환원반응 중에 생성된 수산화철의 종류 및 입자크기를 XRD와 SEM으로 분석하였다.

  • PDF

점토로부터 철불순물의 생물학적 제거에 미치는 탄소원의 영향

  • 이은영;조경숙;류희욱;배무
    • 한국미생물·생명공학회지
    • /
    • 제25권6호
    • /
    • pp.552-559
    • /
    • 1997
  • Fe (III) impurities in clay could be microbially removed by inhabitant dissimilatory Fe (III) reducing microorganisms. Insoluble Fe (III) in clay particles was leached out as soluble reductive form, Fe (II). The microorganisms removed from 10 to 45% of the initial Fe (III) when each sugar was supplemented to be in ranges of 1 - 5 % (w/w; sugar/clay). The microorganisms reduced 2.1 - 12.8 mol of Fe (III) per 100 mol of carbon in sugars metabolized when sugars such as glucose, maltose, and sucrose were used as sole carbon source. Bacillus sp. IRB-W and Pseudomonas sp. IRB-Y were isolated from the enrichment culture of the clay. The isolates were considered to participate in metabolizing organic compounds to fermentative intermediates with relatively little Fe (III) reduction at initial Fe (III) reduction process. By the microbial treatment, the whiteness of the clay was increased form 63.20 to 79.64, whereas the redness was obviously decreased form 13.47 to 3.55. This treatment did not cause any unfavorable modifications in mineralogical compositions of the clay.

  • PDF

Synthesis of iron nanoparticles with poly(1-vinylpyrrolidone-co-vinyl acetate) and its application to nitrate reduction

  • Lee, Nara;Choi, Kyunghoon;Uthuppu, Basil;Jakobsen, Mogens H.;Hwang, Yuhoon;Broholm, Mette M.;Lee, Woojin
    • Advances in environmental research
    • /
    • 제3권2호
    • /
    • pp.107-116
    • /
    • 2014
  • This study aimed to synthesize dispersed and reactive nanoscale zero-valent iron (nZVI) with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), nontoxic and biodegradable stabilizer. The nZVI used for the experiments was prepared by reduction of ferric solution in the presence of PVP/VA with specific weight ratios to iron contents. Colloidal stability was investigated based on the rate of sedimentation, hydrodynamic radius and zeta potential measurement. The characteristic time, which demonstrated dispersivity of particles resisting aggregation, increased from 21.2 min (bare nZVI) to 97.8 min with increasing amount of PVP/VA (the ratios of 2). For the most stable nZVI coated by PVP/VA, its reactivity was examined by nitrate reduction in a closed batch system. The pseudo-first-order kinetic rate constants for the nitrate reduction by the nanoparticles with PVP/VA ratios of 0 and 2 were 0.1633 and $0.1395min^{-1}$ respectively. A nitrogen mass balance, established by quantitative analysis of aqueous nitrogen species, showed that the addition of PVP/VA to nZVI can change the reduction capacity of the nanoparticles.

Laboratory-scale Microcosm Studies in Assessing Enhanced Bioremediation Potential of BTEX and MTBE under Various Electron Acceptors in Contaminated Soil

  • 오인석;이시진;장순웅
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.368-371
    • /
    • 2003
  • Accidental release of petroleum products from underground storage tank(USTs) is one of the most common causes of groundwater contamination. BTEX is the major components of fuel oils, which are hazardous substances regulated by many nations. In addition to BTEX, other gasoline consituents such as MTBE(methyl-t-buthyl ether), anphthalene are also toxic to humans. Natual attenuation processes include physic, chemical, and biological trasformation. Aerobic and anaerobic biodegradation are believed to be the major processes that account for both containment of the petroleum-hydrocarbon plum and reduction of the contaminant concentrations. Aerobic bioremediation has been highly effective in the remediation of many fuel releases. However, Bioremediation of aromatic hydrocarbons in groundwater and sediments is ofen limited by the inability to provide sufficient oxygen to the contaminated zones due to the low water solubility of oxygen. Anaerobic processes refer to a variety of biodegradation mechanisms that use nitrate, ferric iron, sulfate, and carbon dioxide as terminal electron accepters. The objectives of this study was to conduct laboratory-scale microcosm studies in assessing enhanced bioremediation potential of BTEX and MTBE under various electron accepters(aerobic, nitrate, ferric iron, sulfate) in contaminated Soil. these results suggest that, presents evidence and a variety pattern of the biological removal of aromatic compounds under enhanced nitrate-, Fe(III)-, sulfate-reducing conditions.

  • PDF

Fe ion과 활성산소 관련 지방산화반응에 미치는 솔잎 추출물의 영향 (Effect of Pine Needle Extract on Fe ion and Active Oxygen Related Lipid Oxidation in Oil Emulsion)

  • 김수민;조영석
    • 한국식품저장유통학회지
    • /
    • 제6권1호
    • /
    • pp.115-120
    • /
    • 1999
  • This study was carried out to investigate the effect of Pine needle extract on lipid oxidation and free radical reaction in iron sources reacted with active oxygen species. The results were summarized as follow; The pine needle extracts didn`t show a distinct effect on reduction of lipid oxidation if the iron ion didn`t exist in oil emulsion. The pine needle extracts played role as a strong chelating agents to bind iron ion if Ferrous iron(Fe\ulcorner) exist in oil emulsion. Ferric iron(Fe) was lower effect than Ferrous iron(Fe) on free radical reaction in oil emulsion. And also, the Fe\ulcorner reacted with pine needle extract did not show distinct effect on free radical reaction, compared to Fe\ulcorner reacted with pine needle extract. And also, Pine needle extracts reacted with H\ulcornerO\ulcorner were tended to show a low oxygen scavenging ability in case of H\ulcornerO\ulcorner only was existed, compared to those of H\ulcornerO\ulcorner + Fe\ulcorner complex. Pine needle extracts were the most powerful Fe\ulcorner binding agents, compared to other strong synthetic antioxidants such as EDTA and DTPA.

  • PDF

논과 갯벌에서 톨루엔의 혐기성 생분해에 미치는 전자수용체의 영향 (Effect of Electron Acceptor on Anaerobic Toluene Biodegradation in Rice Field and Tidal Mud Flat)

  • 조경숙
    • 한국미생물·생명공학회지
    • /
    • 제31권2호
    • /
    • pp.197-200
    • /
    • 2003
  • In oil-contaminated environments, anaerobic biodegradation of toluene depended on the concentration and distribution of terminal electron acceptor as well as the physicochemical properties such as DO concentration, redox potential and pH. This study showed the anaerobic biodegradation of toluene in two different soils by using nitrate reduction, ferric iron reduction, sulfate reduction and methanogensis. Toluene degradation rates in the soil samples taken from rice filed and tidal mud flat by nitrate reduction were higher than those by other processes. Tho soil samples from the two fields were enriched for 130 days by providing toluene as a sole carbon source and nitrate or sulfate as a terminal electron acceptor. The toluene degradation rates in the enriched denitrifying consortia obtained from the rice field and tidal mud flat soil were 310.7 and 200.6 $\mu$mol$ L^{-1}$ / $d^{-1}$, respectively. The toluene (legradation rates in the enriched sulfate-reducing consortia from the fields ranged fi-om 149.1 to 86.1$\mu$mol $L^{-1}$ / $d^{-1}$ .

Distribution of Vital, Environmental Components and Nutrients Migration Over Sedimentary Water Layers

  • Khirul, Md Akhte;Kim, Beom-Geun;Cho, Daechul;Kwon, Sung-Hyun
    • 한국환경과학회지
    • /
    • 제30권3호
    • /
    • pp.195-206
    • /
    • 2021
  • Contaminated marine sediment is a secondary pollution source in the coastal areas, which can result in increased nutrients concentrations in the overlying water. We analyzed the nutrients release characteristics into overlying water from sediments and the interaction among benthic circulation of nitrogen, phosphorus, iron, and sulfur were investigated in a preset sediment/water column. Profiles of pH, ORP, sulfur, iron, nitrogen, phosphorus pools were determined in the sediment and three different layers of overlying water. Variety types of sulfur in the sediments plays a significant role on nutrients transfer into overlying water. Dissimilatory nitrate reduction and various sulfur species interaction are predominantly embodied by the enhancing effects of sulfide on nitrogen reduction. Contaminant sediment take on high organic matter, which is decomposed by bacteria, as a result promote bacterial sulfate reduction and generate sulfide in the sediment. The sulfur and iron interactions had also influence on phosphorus cycling and released from sediment into overlying water may ensue over the dissolution of ferric iron intercede by iron-reducing bacteria. The nutrients release rate was calculated followed by release rate equation. The results showed that the sediments released large-scale quantity of ammonium nitrogen and phosphate, which are main inner source of overlying water pollution. A mechanical migration of key nutrients such as ammonia and inorganic phosphate was depicted numerically with Fick's diffusion law, which showed a fair agreement to most of the experimental data.

Qualitative comparison of chemical and green synthesized Fe3O4 nanoparticles

  • Gokila, V.;Perarasu, V.T.;Rufina, R. Delma Jones
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.71-76
    • /
    • 2021
  • Synthesis of nanoparticles using green technology using plants is gaining significant attention as it is an environmentally friendly substitute to conventional physical and chemical methods. The present study was focused on the chemical and green synthesis of Iron Oxide nanoparticles from ferric chloride. The green synthesis was achieved by utilizing the bio components of Hibiscus rosa-sinensis. The Fe3O4 nanoparticles with the size range of 87-400 nm were synthesized by wet chemical reduction technique which are unstable, prone to aggregation while in green synthesis the phytochemicals present in the leaf extract acts as the capping as well as the reducing agent thus the green synthesized iron (III) oxide nanoparticles were naturally stabilized, spherical shaped and are in the size range of 2-80 nm. The results of both the protocols are compared and presented briefly.

FeO/Fe(II) 시스템에서 TCE의 제거 특성 (Characteristics of the TCE removal in FeO/Fe(II) System)

  • 성동준;이윤모;최원호;박주양
    • 대한토목학회논문집
    • /
    • 제28권1B호
    • /
    • pp.149-152
    • /
    • 2008
  • 철의 환원 특성에 관한 연구는 이미 널리 수행되었으며 특히 미네랄과 2가철의 반응 메커니즘은 2가철의 흡착이나 바운드를 통해 Fe(II)-Fe(III) (hydr)oxides를 생성하여 2가철이 3가철로 산화됨으로써 물질을 환원시키는 것으로 받아들여지고 있다. 그러나 2가철로 개질된 재강슬래그를 이용한 DS/S 실험과정에서 이러한 메커니즘으로 설명하기 힘든 현상을 발견하였다. 재강슬래그의 주요 성분중의 하나인 FeO와 Fe(II)만을 이용하여 TCE의 분해과정을 실험해 본 결과 초기 TCE의 분해가 이루어지지 않다가 급속히 분해되는 현상을 보였으며 이러한 시스템에서 TCE의 분해는 예상치 못한 결과였다. FeO/Fe(II) 시스템은 3가철이 존재하지 않기 때문에 기존의 Fe(II)-Fe(III) (hydr)oxides를 형성하는 환원 메커니즘으로는 설명할 수 없었다. 따라서 본 연구에서는 TCE의 분해실험과 분해 부산물의 측정, 2가철과 3가철을 확인함으로써 FeO/Fe(II) 시스템의 환원특성을 확인해 보고자 하였다. 실험 결과 2가철이 FeO에 흡착 또는 바운드 되는 것을 확인 할 수 는 있었으나 기존의 메커니즘으로 설명하기에는 부족한 부분이 있었다. 분해부산물들을 통해 환원으로 인한 TCE의 분해는 의심의 여지가 없었으나 FeO/Fe(II) 시스템이 새로운 species를 형성하는지, 혹은 FeO에 Fe(II)가 흡착 또는 바운드 되어 이제껏 알려지지 않은 형태의 새로운 미네랄 상을 형성하는지는 좀 더 상세한 연구가 필요하다.