• Title/Summary/Keyword: fermented squid

Search Result 72, Processing Time 0.053 seconds

The Changes of Non-Volatile Organic Acids in Low Salt Fermented Squid Affected by Adding to Squid Ink (오징어 먹즙 첨가에 따른 저염 오징어 젓갈의 비휘발성 유기산 변화)

  • Oh, Sung-Cheon;Cho, Jung-Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.64-71
    • /
    • 2003
  • Squid ink was added to the low salt fermented squid by 4% of concentration and ripened at 10$^{\cric}C$ for 6 weeks and at 20$^{\cric}C$ for 28 days. The effect of the squid ink on the non-volatile organic acids of low salt fermented squid were investigated. The results are as follows; The non-volatile organic acid in the salt fermented squid without addition of the squid ink was examined and the result showed that lactic and acetic acids were the major organic acids even if very small amount of citric and oxalic acids were detected. In the squid ink added to the low salt fermented squid, total quantity of non-volatile organic acid in the latter part of the ripening was lower than no treatment groups.

The Changes of Titrable Acidity and Free Amino Acids in Low Salt Fermented Squid Affected by Adding to Squid Ink (오징어 먹즙 첨가에 따른 저염 오징어 젓갈의 적정산도 및 유리아미노산의 변화)

  • Oh, Sung-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.517-525
    • /
    • 2011
  • Squid ink was added to the low salt fermented squid by 4% of concentration and ripened at $10^{\circ}C$ for 6 weeks and at $20^{\circ}C$ for 28 days. The effect of the squid ink on the titrable acidity and free amino acids of low salt fermented squid were investigated. The results are as follows; The titrable acidity in the salt fermented squid without addition of the squid ink was continuously decreased except for the salt fermented squid with 9% salt content till the latter stage of the ripening, had larger decreasing range than treatment groups. Seeing the composition of free amino acid, the major amino acids are proline, arginine, glutamic acid. leucine and glycine.

Processing Conditions of Low Salt Fermented Squid and its Flavor Components 1. Volatile Flavor Components of Low Salt Fermented Squid (저염 오징어젓갈 제조 방법 및 향미성분 1. 저염 오징어젓갈의 휘발성 향기성분)

  • 최성희;임성임;허성호;김영만
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.261-267
    • /
    • 1995
  • Low-salted and fermented squid product, squid jeotkal was prepared with the addition of 10% salt and fermented for 50 day at 1$0^{\circ}C$. During fementation of squid, sensory evaluation and changes of volatile components were examined. Volatile flavor components in raw squid and low-salted squid jeotkal were extracted using a rotary evaporating system. The volatile concentrates were identified by GC and GC-MS. Major volatile components of raw squid were methional and 2-methyl-2-propanol. However, alcohols such as propanol, isoamyl alcohol, methionol and phenylethyl alcohol increased during the period of fermentation. The model reaction using microorganism was carried out, in order to confirm formation mechanism ofvolatile flavor compounds of the squid during fermentation. The main volatile components of Pseudomonas sp. D2 model system were isoamyl alcohol and acetoin. Those of Staphylococcus xylosus model system were isoamyl alcohol and phenylacetaldehyde.

  • PDF

Processing Conditions of Low-Salt Fermented Squid and Its Flavor Components 2. Effects of Temperature, Salinity and pH on the Growth of Bacteria from Isolated Low Salt Fermented Squid (저염 오징어젓갈 제조 방법 및 향미 성분 2. 온도, 염도 및 pH가 저염 오징어젓갈 숙성 세균의 발육에 미치는 영향)

  • 김영만;이원재;정윤미;허성호;최성희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.4
    • /
    • pp.631-635
    • /
    • 1995
  • In order to develop effective manufacturing method and to improve quality of low-salt fermented squid(10% of table salt), we investigated the effects of temperature, salinity and pH on the growth of Staphylococcus xylosus, Micrococcus varians, Pseudomonas diminuta and Pseudomonas D2 isolated from of low-salt fermented squid and the growth characteristics of these bacteria during fermentation were elucidated. All bacteria showed good growth during the process of low-salt fermented squid(pH 6~7 ; concentration of NaCl, 7~10% ; temperature, 7~1$0^{\circ}C$) and their cell numbers increased as fermentation proceeded under the same fermentation condition.

  • PDF

The Effect of Squid Ink on the Textural Properties of Squid during Low Salt Fermentation (저염 오징어 젓갈의 숙성 중 오징어 먹즙이 물성에 미치는 영향)

  • Oh, Sung-Cheon;Song, Soo-Ik;Jang, Gi-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.488-493
    • /
    • 2013
  • This study shows the effect of 4% squid ink on the textural properties of squid during fermentation for 8 weeks at $10^{\circ}C$ or 32 days at $20^{\circ}C$ in 5% salt solution. Although the hardness and chewiness of the squid fermented with squid ink continuously decreased during fermentation, the degree of decrease was smaller than that of squid fermented without squid ink. We can conclude that squid ink inhibited the ripening of the low salt fermented squid.

Effects of Gamma Irradiation on Taste Compounds in Processing of Low Salted and Fermented Squid (감마선 이용 저염 오징어젓갈 제조시 정미성분의 변화)

  • 변명우;이경행;김재훈;이주운;이은미;김영지
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.5
    • /
    • pp.1051-1057
    • /
    • 1999
  • The effects of gamma irradiation on taste compounds of low salted and fermented squid were investig ated. Salted and fermented squid products were prepared with salt concentrations of 5%, 10%, and 20% and was fermented at 15oC and 25oC after gamma irradiation with a dosage of 2.5~10 kGy. Amino nitrogen (AN), volatile basic nitrogen(VBN), trimethylamine(TMA), and hypoxanthine(Hx) contents were examined during the fermentation periods. Results showed that gamma irradiation had no effect on the initial con tents of AN, VBN, TMA, and Hx compared with non irradiated salted and fermented squid. During the fermentation periods, these contents rapidly increased in accordance with the decrease in NaCl concen tration and irradiation dose, and the increase in fermentation temperature. Specifically, the taste compounds of salted and fermented squid prepared with a NaCl concentration of 10% and an irradiation dose of 10 kGy maintained the appropriate level for the fermentation period at 15oC.

  • PDF

The Changes of Volatile Basic Nitrogen and Browing in Salt Fermented Squid Affected by Adding to Squid Ink (오징어 먹즙 첨가에 따른 오징어 젓갈의 휘발성 염기질소 및 갈변도의 변화)

  • Oh, Sung-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.631-637
    • /
    • 2012
  • Squid ink was added to the salt fermented squid by 2% or 4% of concentration and ripened at $10^{\circ}C$ for 8 weeks and at $20^{\circ}C$ for 32days. The effects of the squid ink on the volatile basic nitrogen and browning activities of salt fermented squid were investigated. The results are as follows; As the salt concentration was decreased and the fermentation temperature raised, volatile basic nitrogen in the salt fermented squid without addition of the squid ink was significantly increased to the latter stage of the ripening and hence fermentations were enhanced. It was found that the browning has decreased from the mid-stage of the ripening, after showing the increasement during the early stage. The volatile basic nitrogen content in the salt fermented squid addition of the squid ink has increased to the latter part of the ripening but the range was smaller than no treatment groups.

Influences of Squid Ink Added to Low-Salted Squid Jeot-gal on Its Proteolytic Characteristics (오징어 먹즙 첨가가 저 식염 오징어 젓갈의 단백질분해 특성에 미치는 영향)

  • Oh, Sung-Cheon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.348-355
    • /
    • 2013
  • Squid ink was added to the salt fermented squid by 2% or 4% of concentration and ripened at $10^{\circ}C$ for 8 weeks and at $20^{\circ}C$ for 32days. The effects of the squid ink on the amino nitrogen and muscle protein of salt fermented squid were investigated. The results are as follows; As the salt concentration was decreased and the fermentation temperature raised, amino nitrogen in the salt fermented squid without addition of the squid ink was significantly increased to the latter stage of the ripening and hence fermentations were enhanced. From the change of the protein in the squid muscle in the experiments, dissolution of the myosin heavy chain took place conspicuously in the early stage of the ripening while actin was rarely changed which resulted in the strong resistance to protease. The amino nitrogen content in the salt fermented squid addition of the squid ink has increased to the latter part of the ripening but the range was smaller than no treatment groups. The protein in squid muscle, especially the myosin heavy chain was remarkably dissolved in the middle of the ripening whereas the squid ink added groups of high salt concentration and low temperature showed the tendency of slow proteolysis.

Quality Properties of Fermented Squid Viscera Product with Aspergillus oryzae Koji and Its Seasoning (Koji를 첨가하여 발효한 오징어 내장 조미료의 품질특성)

  • Choi, Seung-Hwa;Kim, Sang-Moo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.1
    • /
    • pp.94-101
    • /
    • 2011
  • Squid (Todarodes pacificus) is processed as dried or seasoned-dried products and its catch gradually increased from 270,298 M/T in 2005 to 367,940 M/T in 2008 in Korea. Squid processing by-product (viscera) was usually discarded as a waste resulting in environmental problem. In order to utilize squid viscera for more value-added products, a natural squid seasoning was developed by fermenting with Aspergillus oryzae koji. Squid viscera at 5, 10 and 15% salt concentrations with fixed levels of 5% koji and 30% water was fermented at room temperature. The quality properties of squid fermented products such as amino-N, TMA, VBN, total viable cell count, pH and total acidity were determined at different fermentation periods. The contents of amino-N, TMA, and VBN of squid seasoning at 5% salt concentration fermented for 14 days were the highest. Based on amino-N content, squid viscera at 5% koji fermented for 14 days was selected for further assays: the content of moisture, crude protein, crude lipid, crude ash, and carbohydrate were 5.98, 35.19, 33.08, 11.30, and 14.45%, respectively. The content of glutamate, alanine, leusine and lysine were 7.06, 12.34, 9.90 and 10.22%, respectively. The $IC_{50}$ values of DPPH scavenging and $\beta$-glucuronidase inhibitory activity were 12.89 and 12.58 mg/mL, respectively. A natural squid seasoning was manufactured by mixing fermented squid viscera and an ingredient. Based on the results of sensory evaluation, the fermented squid viscera seasoning was almost equal to other natural complex seasonings such as anchovy, cow meat, and fisheries seasoning.

Influences of Squid Ink Added to Low Salt Fermented Squid on Its Changes in Lactic Acid Bacteria (저염 오징어 젓갈의 숙성 중 오징어 먹즙 첨가가 젖산균의 변화에 미치는 영향)

  • Oh, Sung-Cheon
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.678-684
    • /
    • 2013
  • This study measured the change of lactic acid bacteria during the ripening fermentation process of low salt fermented squid with no squid ink added. All study groups showed increase of Leuconostoc and rapid growth of total plate count at the beginning stage of ripening and the maximum microbial count showed at the optimum stage of ripening which gradually reduced after the optimum stage. It is believed that Lactobacillus occupied the major part of the total plate count after the optimum stage of the squid fermentation, and it was related to the quality after the optimized ripening stage. Streptococcus and Pediococcus were gradually increased until the optimum stage of the ripening, and then decreased rapidly. Yeasts were detected in the middle stage of the fermentation and rapid increase was shown after the last stage of the fermentation which suggests that yeasts participate in putrefaction of the low salt fermented squid. The change of lactic acid bacteria observed during the ripening fermentation of low salt fermented squid with squid ink added was that the total plate count increased until ripening middle stage but showed a tendency to slightly reduce after the middle stage. The length of time to reach the maximum value was longer than the no treatment groups. Among the lactic acid bacteria, Leuconostoc, Streptococcus and Pediococcus has increased until the middle stage of the ripening while Lactobacillus constantly increased to the end part of the ripening. Yeasts had no increasing in the early ripening stage, but after middle of the ripening, it started to increase. That kind of tendency was similar to the case of no treatment groups. However, the amount of lactic acid bacteria tended to be less than no treatment groups. The tendency of decreasing number of all bacteria in low salt fermented squid with squid ink added shows squid ink restricts the growth of all bacteria.