• Title/Summary/Keyword: fermentation

Search Result 7,939, Processing Time 0.036 seconds

On-line Monitoring of a Glucose Concentration on a Fermentation Process of Wine for an Automatic Control of a Fermentation Process (발효공정 자동제어를 위한 포도주 발효 중 포도당 농도 온라인 측정)

  • Song, Dae-Bin
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.276-281
    • /
    • 2008
  • A flow injection analysis method (FIA), which analyzes sample conditions after injecting a sample and reagents into a continuous stream, are recognized as the most adequate analyzing method according to the increase of sampling frequency, the decrease of measuring time and the diversity of measuring targets. Specially, the FIA is considered to be used effectively for the control of a fermentation process to produce fermentation food and useful microbial production by activation of a fermentation industry for development of biological materials. In this study, a flow injection analysis sensor unit was developed for on-line monitoring of the fermentation process. The performance was verified by on-line measuring the concentration of glucose of the fermentation process of wine. The glucose concentrations of the samples were measured every 12 hours during the whole fermentation process and compared with those by a HPLC. The concentration relative errors of glucose on the fermentation process of wine showed below 30% within 72 hours and over 50% after the 72 hours. The sensor unit had potential to on-line monitoring of the fermentation process but some problems to overcome for an commercial application.

The Quality Characteristics of Chunggujang Prepared by Bacillus Subtilis NRLSI IV on the Different Inoculum Levels and Fermentation Times (Bacillus Subtilis NRLSI IV로 제조한 청국장의 접종포자농도와 발효시간에 따른 품질 특성)

  • Kim Kyung-Mi;Kim Haeng-Ran;Park Hong-Ju
    • The Korean Journal of Community Living Science
    • /
    • v.17 no.3
    • /
    • pp.123-131
    • /
    • 2006
  • To compare the quality characteristics, chunggugjang was prepared with Bacillus subtilis NRLSI IV on the different inoculum levels$(10^2,\;10^4,\;10^6,\;and\;10^8 CFU/ml)$ and fermentation times(0, 12, 24, 36, and 48 hours). Although significant change in total nitrogen content was not found, the content of amino type, soluble and ammonia type nitrogen was generally increased according to the increase in fermentation time. Decomposition rate of nitrogen was also increased by fermentation time and nitrogen solubility was the highest value(62-75.9%) at 48 hour fermentation. In results of color changes, it was found that L and a value were decreased but there was no significant changes in b value as fermentation time was increased. In chunggugjang made with long fermentation time, hardness was decreased and relative viscosity of viscous substance was gradually decreased after little increase at initial fermentation time. The effect of inoculum level on hardness and relative viscosity were similar to that of fermentation time, i.e. the decrease of these at high inoculum level. In activity of V-GTP, 36 hour incubation could produce the highest value whereas no effect of inoculum level was found during fermentation except at 48 hour. In chunggugjang made with $10^2CFU/mL$ of Bacillus subtilis NRLSI IV, the content of glucose, sucrose, raffinose and stachyose was dramatically decreased at initial fermentation time and that of phytic acid, oxalic acid, citric acid, tartaric acid and malic acid was also decreased during fermentation, although the increase in acetic acid was found.

  • PDF

Microbiota and Physicochemical Analysis on Traditional Kocho Fermentation Enhancer to Reduce Losses (Gammaa) in the Highlands of Ethiopia

  • Dibaba, Adane Hailu;Tuffa, Ashenafi Chaka;Gebremedhin, Endrias Zewdu;Nugus, Gerbaba Guta;Gebresenbet, Girma
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.210-224
    • /
    • 2018
  • Warqe (Ensete ventricosum) has been traditionally fermented in an earthen pit to yield a carbohydrate-rich food product named kocho, for generations. A fermentation enhancer (gammaa) was added to this fermenting mass to enhance the fermentation process. The objectives of this study were to assess the physicochemical properties and microbiota of the kocho fermentation enhancer culture to reduce losses. Cross-sectional study design was implemented to collect 131 gammaa samples on the first day of fermentation. The samples were further classified into four groups according to the duration of fermentation (14, 21, 30, and 60 days) practised in various households traditionally. The results showed that the fermentation time significantly affected the physicochemical properties and microbial load of gammaa (p < 0.01). As the fermentation progressed from day 1 to 60, the pH decreased and the titratable acidity increased. The total coliform, Enterobacteriaceae, aerobicmesophilic bacteria (AMB), yeast, and mould counts were significantly reduced at the end of fermentation. In contrast, the number of lactic acid bacteria (LAB) increased significantly until day 30 of fermentation, because of the ability of the LAB to grow at low pH. Lactobacillus species from LAB isolates and Enter obacteriaceae from AMB isolates were the most abundant microorganisms in gammaa fermentation. However, the Enterobacteriaceae and Lactobacilli species count showed decreasing and increasing trends, respectively, as the fermentation progressed. These isolates must be investigated further to identify the species and strain, so as to develop gammaa at the commercial scale.

Angiotensin I-Converting Enzyme Inhibitor Activity on Egg Albumen Fermentation

  • Nahariah, N.;Legowo, A.M.;Abustam, E.;Hintono, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.855-861
    • /
    • 2015
  • Lactobacillus plantarum is used for fermentation of fish products, meat and milk. However, the utilization of these bacteria in egg processing has not been done. This study was designed to evaluate the potential of fermented egg albumen as a functional food that is rich in angiotensin I-converting enzyme inhibitors activity (ACE-inhibitor activity) and is antihypertensive. A completely randomized design was used in this study with six durations of fermentation (6, 12, 18, 24, 30, and 36 h) as treatments. Six hundred eggs obtained from the same chicken farm were used in the experiment as sources of egg albumen. Bacteria L. plantarum FNCC 0027 used in the fermentation was isolated from cow's milk. The parameters measured were the total bacteria, dissolved protein, pH, total acid and the activity of ACE-inhibitors. The results showed that there were significant effects of fermentation time on the parameters tested. Total bacteria increased significantly during fermentation for 6, 12, 18, and 24 h and then decreased with the increasing time of fermentation to 30 and 36 h. Soluble protein increased significantly during fermentation to 18 h and then subsequently decreased during of fermentation to 24, 30, and 36 h. The pH value decreased markedly during fermentation. The activities of ACE-inhibitor in fermented egg albumen increased during fermentation to 18 h and then decreased with the increasing of the duration of fermentation to 24, 30, and 36 h. The egg albumen which was fermented for 18 h resulted in a functional food that was rich in ACE-inhibitor activity.

Effect of Fermentation Temperature on Quality of Doenjang (숙성온도가 된장의 품질에 미치는 영향)

  • Kim, Moon-Seok;Kim, Eun-Mi;Chang, Kyu-Seob
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • There were four types of Doenjang fermentation as following conditions for investigation ; 1) low temperature fermentation at $13^{\circ}C$ for 180 days, 2) low temperature at $13^{\circ}C$ for 7 days to room temperature at $30^{\circ}C$ for 10 days, to low temperature at $13^{\circ}C$ for 163 days, and for 173 days, 3) low temperature at $13^{\circ}C$ 7 days to room temperature at $30^{\circ}C$, 4) room temperature at $30^{\circ}C$ for 180 days. There were no changes of moisture, NaCl and total nitrogen content during fermentation period of four types conditions, but pH and amino type nitrogen decreased in room temperature at $30^{\circ}C$ for 180 days. It required 3 times more fermentation period until same quantity of the amino type nitrogen. The low temperature fermentation sample was lower than room temperature fermentation sample in pH and amino type nitrogen. The yeast decreased in low temperature fermentation sample taken 15 to 30 days longer than room temperature sample. The yeast is increased up to 30 days, and decreased little by little. After 60 days, it remained a few without effectiveness on the Doenjang quality. The low temperature fermentation sample showed brighter than room temperature fermentation sample. Different fermentation condition affected Doenjnag quality, especially, low temperature fermentation sample showed bright color in Doenjnag. So low temperature fermentation must be expected as good method for getting high quality Doenjnag.

  • PDF

Fermentation Aspects of Fruit-Vegetable Juice by Mixed Cultures of Lactic Acid Bacteria Isolated from Kimchi and Yeast (김치 젖산균과 효모의 혼합배양 방법에 의한 과채류즙의 발효양상)

  • 최홍식;김현영;여경목;김복남
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1059-1064
    • /
    • 1998
  • Fermented beverage using lactic acid bacteria isolated from kimchi was investigated. Lactic acid bacteria KL 1, KD 6, KL 4 strains from kimchi, or obtained Lactobacillus acidophilus, Lactobacillus plantarum, Leuconostoc mesenteroides with and without yeast(Saccharomyces cerevisiae) were inoculated in fruit vegetable juice for single and mixed culture fermentation. During the fermentation by bacterial strain and yeast for 1~3 days at 30oC, various fermentation behaviors were observed. The growth rate of mixed culture of KL 1 and yeast was higher than that of single culture by KL 1 alone during the fermentation. The amount of organic acid produced by the mixed culture fermentation of KL 1 and yeast was 0.82%(3 day) or 0.58%(1 day) and with the final pH of 3.3(3 day) or 4.2(1 day). These mixed culture systems of isolated strains or other bacterial strains had almost similar results of growth rate and acid production. Among several bacterial strains, KL 1 was suitable for the mixed culture fermentation with yeast in terms of desirable fermentation behavior and organoleptical quality. The selected strain, KL 1 was identified as Leuconostoc spp. through the series of tests on carbohydrate fermentation and biochemical characteristics.

  • PDF

The effect of the ammonium thiocyanate on the fermentation of the yeasts.(Saccharomyces brenerei-Hefe-Rasse XII, Saccharomyces formosensis No. 396 IAM) and Saccharomyces cerevisiae IAM) (Ammonium thiocyanate 농도가 주정효모(Saccharomyces brenerei Hefe-Rasse XII, Saccharomyces formosensis No. 396 IAM) 및 맥주효모(Saccharomyces cerevisiae IAM)의 발효작용에 미치는 영향)

  • 조운복;이상태
    • Korean Journal of Microbiology
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 1968
  • There are many reports on the effect of salts to the fermentation of the yeasts, but there are a few reports on the effect of the ammonium thiocyanate(NH$_4CNS$) on the fermentation of the yeasts(Saccharomyces brenerei-Hefe-Rasse X11, Saccharomyces formosensis No. 396 IAM and Saccharomyces cerevisiae IAM). A study has been made on the effects of the ammonium thiocyanate on the fermentation of the above yeasts. The results of the research are as belows: 1) The addition of 0. 00001 mol. of ammonium thiocyanate makes the fermentation of the yeast(Sacch. formosensis No. 39 IAM) facilitate, but has not influenced the another yeast (Sacch. brenerei-Hefe-Rasse XII). 2) The addition of 0. 001 mol. of ammonium thiocyanate makes fermentation of Rases XII the fastest, but the on other yeast (Sacch. formosensis No - 396 IAM) was accelerated by the addition of 0. 1 mol., and it seems to have abnormal fermentation by the addition of 0. 0001 mol. The addition of ammonium thiocyanate(0. 00001-0. 001 mol.) inhibited the fermentatirn of the yeast(Sacch. cerevisiae IAM), but the concentration of 0. 1 mol. does not interrupt the fermentation of Sacch. cerevisiae IAM and increased the fermentation. 3) The order of effects to the fermentation of each yeast is Sacch. brenerei-Hefe-Rasse XII, Sacch. formosensis No. 396 IAM, Sacch. cerevisiae IAM.

  • PDF

The Fermentation Characteristics of Saccharomyces cerevisiae F38-1 a Thermotolerant Yeast Isolated for Fuel Alcohol Production at Elevated Temperature (연료용 알콜의 고온발효를 위해 분리한 고온성 효모균주 Saccharomyces cerevisiae F38-1의 발효 특성)

  • 김재완;김상헌;진익렬
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.624-631
    • /
    • 1995
  • The fermentation characteristics of Saccharomyces cerevisiae F38-1, a newly isolated thermotolerant yeast strain from a high temperature environment have been studied using a fermentation medium containing 20% glucose, 0.2% yeast extract, 0.2% polypeptone, 0.3% (NH$_{4}$)$_{2}$SO$_{4}$, 0.1% KH$_{2}$PO$_{4}$, and 0.2% MgSO$_{4}$ without shaking at 30$\circ$C to 43$\circ$C for 5 days. The fermentability was over 90% at 30$\circ$C, 88% at 37$\circ$C, 77% at 40$\circ$C and 30% at 43$\circ$C. A similar fermentation result was obtained at pH between 4 and 6 at 30$\circ$C and 40$\circ$C. Aeration stimulated the growth of the strain at the beginning of the fermentation, but it reduced alcohol production at the end of alcohol fermentation. Optimal glucose concentration was determined to be between 18 and 22% at 40$\circ$C as well as 30$\circ$C, but the growth was inhibited at the glucose concentration of over 30%. A fermentability of over 90% was observed at 40$\circ$C in 2 days when the medium was supplemented by 2% yeast extract. A higher inoculum size increased the initial fermentation rate, but not the fermentation. A fermentability of over 90% was achieved in 2 days at 40$\circ$C in a fermentor experiment using an optimized medium containing 20% glucose and 1% yeast extract.

  • PDF

Solubility, Viscosity, Water Holding Capacity, and Oil Holding Capacity of Soybean Proteins by Bacillus subtilis and/or Lactobacillus bulgaricus (Bacillus subtilis와 Lactobacillus bulgaricus에 의한 청국장 단백질의 용해성, 점성, 보수성 및 보유성)

  • Lee, Jin-Woo
    • The Korean Journal of Community Living Science
    • /
    • v.18 no.3
    • /
    • pp.399-406
    • /
    • 2007
  • Soybean seeds were fermented by Bacillus subtilis and/or Lactobacillus bulgaricus to improve solubility, viscosity, water holding capacity and oil holding capacity of soybean proteins in Chongkukjang. The maximum colony forming unit and protease activity of B. subtilis or L bulgaricus were observed after 60 hours of fermentation, and those of the mixed fermentation by two microorganisms were steadily increased during the fermentation periods. Solubilities of soybean proteins by B. subtilis or L bulgaricus were steadily increased before the values were considerably increased to 60 hours of fermentation, whereas water holding capacities of the proteins were decreased by B. subtilis or L. bulgaricus and those of the mixed fermentation were decreased progressively. Viscosities of soybean proteins by B. subtilis and/or L. bulgaricus were decreased progressively during the fermentation. Viscosities of soybean proteins by B. subtilis and/or L. bulgaricus were decreased progressively during the fermentation. Oil holding capacities of soybeans by B. subtilis or L. bulgaricus were maximum at 20 or 80 hours of fermentation and those of the mixed fermentation were decreased after 10 hours of the fermentation.

  • PDF

Novel Starter Culture for Kimchi, Using Bacteriocin-producing Enterococcus faecium Strain (Enterococcus faecium bacteriocin 생산균주를 starter로 이용한 김치의 제조)

  • 하덕모;차동수
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.550-556
    • /
    • 1994
  • For an extension of the palatable stage in Kimchi which was limited by further lowering pH as the fermentation proceeds, the starter culture of bacteriocin-producing Enterococcus faecium DU 0267 obtained from Kimchi was added at the preparation time, and pH, bacteriocin activity, growth of lactic acid bacterial group and gas production in Kimchi were examined during the fermentation at 10, 20 and 30$\circ$C . The pH of Kimchi fell rapidly to 4.0~4.2 in the early fermentation stage, and then, has gone down very slowly throughout further fermentation. The lactic acid bacte- ria, particularly lactobacilli and leuconostoc, were remarkably slower in its growth than those in the control. Although the patterns of these change during fermentation at different temperatures were similar, these effects by the addition of starter were enhanced at 10 and 20$\circ$C. The bacteriocin activity was increased rapidly during log phase of the bacteriocin producer strain in the early fermentation stage of Kimchi and reached their maximum after fermentation at 10$\circC, for 8 days and at 20 or 30$\circ$C for 2 days. Thereafter, the activity disappeared quickly. The gas production by fermentation was also suppressed considerably, and their volume produced after fermentation at 20$\circ$C for 14 days corresponded to 60% of those of the control.

  • PDF