• Title/Summary/Keyword: femtosecond pulse

Search Result 127, Processing Time 0.03 seconds

Theoretical Considerations on Combined Optical Distance Measurements Using a Femtosecond Pulse Laser

  • Joo, Ki-Nam;Kim, Seung-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.396-400
    • /
    • 2012
  • We introduce a combined technique and the mathematical description for distance measurements using a femtosecond pulse laser in a long range and a fine resolution. For distance measurements, the maximum measurable range can be extended by combining measurement results from several different methods while requiring relationships between the different measurement uncertainties and unambiguity ranges. This paper briefly explains why the uncertainty of a rough measurement technique (RMT) should be, at least, smaller than the half unambiguity range of a fine measurement technique (FMT) in order to combine a FMT with a RMT. Further discussions about the total measurement range, resolution, and uncertainty for various optical measurement techniques are also discussed.

Study of ablation depth control of ITO thin film using a beam shaped femtosecond laser (빔 쉐이핑을 이용한 펨토초 레이저 ITO 박막 가공 깊이 제어에 대한 연구)

  • Kim, Hoon-Young;Yoon, Ji-Wook;Choi, Won-Seok;Stolberg, Klaus;Whang, Kyoung-Hyun;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Indium tin oxide (ITO) is an important transparent conducting oxide (TCO). ITO films have been widely used as transparent electrodes in optoelectronic devices such as organic light-emitting devices (OLED) because of their high electrical conductivity and high transmission in the visible wavelength. Finding ways to control ITO micromachining depth is important role in the fabrication and assembly of display field. This study presented the depth control of ITO patterns on glass substrate using a femtosecond laser and slit. In the proposed approach, a gaussian beam was transformed into a quasi-flat top beam by slit. In addition, pattern of square type shaped by slit were fabricated on the surfaces of ITO films using femtosecond laser pulse irradiation, under 1030nm, single pulse. Using femtosecond laser and slit, we selectively controlled forming depth and removed the ITO thin films with thickness 145nm on glass substrates. In particular, we studied the effect of pulse number on the ablation of ITO. Clean removal of the ITO layer was observed when the 6 pulse number at $2.8TW/cm^2$. Furthermore, the morphologies and fabricated depth were characterized using a optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS).

  • PDF

Laser Ablation of Polypropylene Films using Nanosecond, Picosecond, and Femtosecond Laser

  • Sohn, Ik-Bu;Noh, Young-Chul;Kim, Young-Seop;Ko, Do-Kyeong;Lee, Jong-Min;Choi, Young-Jin
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.38-41
    • /
    • 2008
  • Precise micropatterning of polypropylene film, which is highly transparent in the wavelength range over 250 nm has been demonstrated by 355 nm nano/picosecond laser and 785 nm femtosecond laser. Increments of both the pulse energy and the shot number of pulses lead to cooccurrence of photochemical and thermal effects, demonstrated by the spatial expansion of rim on the surface of PP. The shapes of the laser-ablated polypropylene films were imaged by optical microscope and measured by a 3D optical measurement system. And, the ablation depth and width of polypropylene film ablated by femtosecond laser at various pulse energy and pulse number were characterized. Our results demonstrate that a femtosecond pulsed laser is an efficient tool for fabricating micropatterns of polypropylene films, where the micropatterns are specifically tailored in size, location and number easily controlled by laser processing conditions.

Femtosecond laser pattering of ITO film on flexible substrate (펨토초 레이저를 이용한 플렉시블 ITO 패터닝 연구)

  • Sohn, Ik-Bu;Kim, Young-Seop;Noh, Young-Chul
    • Laser Solutions
    • /
    • v.13 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • Indium tin oxide (ITO) provides high electrical conductivity and transparency in the visible and near IR (infrared) wavelengths. Thus, it is widely used as a transparent electrode for the fabrication of liquid crystal displays (LCDs) and organic light emitting diode displays (OLRDs), photovoltaic devices, and other optical applications. Lasers have been used for removing coating on polymer substrate for flexible display and electronic industry. In selective removal of ITO layer, laser wavelength, pulse energy, scan speed, and the repetition rate of pulses determine conditions, which are efficient for removal of ITO coating without affecting properties of the polymer substrate. ITO coating removal with a laser is more environmentally friendly than other conventional etching methods. In this paper, pattering of ITO film from polymer substrates is described. The Yb:KGW femtosecond laser processing system with a pulse duration of 250fs, a wavelength of 1030nm and a repetition rate of 100kHz was used for removing ITO coating in air. We can remove the ITO coating using a scanner system with various pulse energies and scan speeds. We observed that the amount of debris is minimal through an optical and a confocal microscope, and femtosecond laser pulses with 1030nm wavelength are effective to remove ITO coating without the polymer substrate ablation.

  • PDF

Ultrashort Pulsed Laser Machining for Biomolecule Trapping

  • Choi, Hae-Woon;Farson, Dave F.;Lee, L.James;Lee, Ho
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.335-340
    • /
    • 2009
  • Ultrashort pulse laser drilling of polycarbonate track-etched membrane (pTEM) material was used to fabricate a mouse embryo cell trapping device. Holes with a diameter of $2{\mu}m$ to $5{\mu}m$ were fabricated on a $10{\mu}m$ thick membrane using a femtosecond laser with a 150 fs pulse width and 775 nm wavelength and multiple-pulse irradiation. In cell trapping tests, the overall cell occupancy of the machined holes in the fabricated pTEM was found to be more than 80%. The results of a single pulse and multiple pulse irradiation were compared in terms of the surface quality. It was generally found that a single pulse with high energy was less desirable than irradiation with multiple pulses of lower energy.

Ablation of Polypropylene for Breathable Packaging Films

  • Sohn, Ik-Bu;Noh, Young-Chul;Choi, Sung-Chul;Ko, Do-Kyeong;Lee, Jong-Min;Choi, Young-Jin
    • Laser Solutions
    • /
    • v.9 no.3
    • /
    • pp.15-21
    • /
    • 2006
  • A Polypropylene (PP) film was ablated using a femtosecond laser with a center wavelength of 785 nm, a pulse width of 184 fs and a repetition rate of 1 kHz. Increments of both pulse energy and the shot number of pulses lead to co-occurrence of photochemical and thermal effect, demonstrated by the spatial expansion of rim on the surface of PP. The shapes of the laser-ablated PP films were imaged by a scanning electron microscope (SEM) and measured a 3D optical measurement system (NanoFocus). And, the oxygen transmission rate (ORT) of periodically laser-ablated PP film were characterized by oxygen permeability tester for modified atmosphere packaging (MAP) of fresh fruit and vegetable. Our results demonstrate that femtosecond pulsed laser is efficient tools for breathable packaging films in modifying the flow of air and gas into and out of a fresh produce container, where the micropatterns are specifically tailored in size, location and number which are easily controlled by laser pulse energy and pulse patterning system.

  • PDF

Absolute Distance Measurement using Synthetic Wavelength of Femto-second Laser (펨토초 레이저의 합성파를 이용한 절대거리 측정)

  • Kim Yun-Seok;Jin Jong-Han;Joo Ki-Nam;Kim Seung-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.569-572
    • /
    • 2005
  • Technological feasibility of using recently-available femtosecond ultra short pulse lasers for advanced precision length metrology is investigated with emphasis on absolute distance measurements with $10{\mu}m$ ??resolution over extensive ranges. The idea of using femtosecond lasers for the measurement of absolute distances is based on the fact that a short pulse train is a mode-locked combination of discrete monochromatic light components spanning a wide spectral bandwidth. The synthetic wavelength is created from the repetition frequency, $f_r$ of the femtosecond laser and for more precise resolution, higher-order harmonics of the repetition frequency may be selected as the synthetic wavelength by using appropriate electronic filters.

  • PDF

Multi-layer Glass Cutting by Femtosecond Laser (극초단 레이저를 이용한 겹침 평판유리 절단)

  • Shin, Hyun-Myung;Lee, Young-Min;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.382-386
    • /
    • 2012
  • A femtosecond laser with 775nm central wavelength and 150 fs of temporal pulse width was used for multi layered glass cutting applications. Ultrashort pulse was effectively used for clean glass cutting with $50{\mu}m$ depth and minimum cutting width. Laser beam was split to two stages and focused on the top surfaces of each layer. Ablation threshold of used glass was measured to be $2.59J/cm^2$. In experiments, 200mW laser power and 1mm/s scanning speed was used for preliminary experiment. Air gap was the major defect occurring parameter and laser power was less sensitive to glass cutting in the experiment. The maximum cutting speed was measured to be 60mm/min with 2kHz, however, Maximum 3m/min cutting speed can be achievable with a commercially available laser with 100kHz.