• Title/Summary/Keyword: female flower

Search Result 115, Processing Time 0.021 seconds

Morphological and Nutritional Characteristics and Crossability with Brassica Species of Baemoochae, xBrassicoraphanus (배무채의 형태와 영양적 특성 및 교잡 친화성)

  • Lee, Soo-Seong;Kim, Tae Yoon;Yang, Jungmin;Kim, Jongkee;Lim, Sooyeon;Yoon, Moo Kyoung
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.543-548
    • /
    • 2012
  • Morphological characters of Baemoochae, xBrassicoraphanus are mostly intermedium of the both parents, Chinese cabbage, Brassica rapa ssp. pekinensis and radish, Raphanus sativus. The upper and lower parts of the leaf resemble the shape of Chinese cabbage and radish, respectively. The midrib of the leaf is round like to that of radish, but very big more than 3 cm in diameter and white in color like that of Chinese cabbage. The root was changed from the swollen type like that of radish to the enlarged taproot like that of the land race of Chinese cabbage after attaining genetical stability. The flower is white. The seed pod is divided into 2 different parts; the upper part is radish and about 4 cm in length and holds 3-4 seeds and the lower part is Chinese cabbage and about 3 cm in length and holds 7-8 seeds. The color of seed is brown, weight per 1.000 seeds is 5.5 g and the number of seeds per mL is 120. The matured plant in the fall season is around 5 kg in weight and outer leaves are very vigorous and stiffly and inner leaves are erect and form a loose head. The leaf and the root contain a high level of sulforaphene which is well known as a functional substance for anti-cancer and anti-super-bacteria. Baemoochae is an amphidiploid and does not have the self incompatibility function. It has a high level of cross compatibility with Chinese cabbage as the female parent, but not the male parent. It is cross incompatible to cabbage, B. oleracea, black mustard, B. nigra and radish. However it is highly compatible to oil seed rape, B. napus, yellow mustard, B. carinata and partial compatible to muatard, B. juncea in the reciprocal cross.

Effect of Root Zone Warming by Hot Water on Fruit Characteristics and Yield of Greenhouse- Grown Oriental Melon (Cucumis melo L.) (온수 지중가온이 참외의 과실특성 및 수량에 미치는 영향)

  • 신용습;이우승;연일권;최성국;최부술
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.110-116
    • /
    • 1997
  • This experiment was conducted to investigate the effects of root zone warming on fruit yield of oriental melon (Cucumis melo L. var. Makuwa) in winter season. Root zone was warmed by hot water flowing through pipe set at 35cm depth from the ridge. Treatments of minimum soil temperature at 20cm depth were 17, 21, $25^{\circ}C$ and non-warming from Jan. 18 to Apr. 18. The results are summarized as follows. 1. The blooming of female flower was faster 1 days in 17$^{\circ}C$ plot, 6 days in 21$^{\circ}C$ plot, and 7 days in $25^{\circ}C$ plot than in control plot and the days from blooming to harvesting were shorter 5 days in 17$^{\circ}C$ plot, 11 days in 21$^{\circ}C$ plot, and 12 days in $25^{\circ}C$ plot than in control plot. 2. Mean fruit weight was the highest in 21$^{\circ}C$ plot, followed $25^{\circ}C$, 17$^{\circ}C$ and control plots, respectively, and flesh thickness was the highest in $25^{\circ}C$ plot, followed by 21, 17$^{\circ}C$ and control plots, respectively. 3. Early and middle-phase yield was the highest in $25^{\circ}C$ plot, followed by 21$^{\circ}C$, 17$^{\circ}C$ and control plots but late yield was the highest in 17$^{\circ}C$ plot, followed by control, 21, and $25^{\circ}C$ plots. Total yield per 10a was higher 33% in 17$^{\circ}C$ plot, 49% in 21$^{\circ}C$ plot, and 37a in $25^{\circ}C$ plots than in control plot, harvested 1, 490kg per 10a. 4. Total yield was highest in 21$^{\circ}C$ plot, followed by $25^{\circ}C$, 17$^{\circ}C$, and control plots. Malformed and fermented fruit rates were the highest in control, followed by 17, 25, and 21$^{\circ}C$ plots and marketable fruit rate was 21, 25, 17$^{\circ}C$, and control plot in order.

  • PDF

STUDIES ON THE DIMORPHISM AND TRANSITION OF BISEXUALITY OF HETEROSTYLOUS POLYGONACEAE (여뀌과 이형경식물의 Dinorphism과 Bisexuality의 변화)

  • Harn, Chang-Yawl
    • Journal of Plant Biology
    • /
    • v.3 no.2
    • /
    • pp.6-18
    • /
    • 1960
  • The present experiments were designed in order to clarify the differences between the long and short styled plants and the transgressive gradition in the degree of dimorphism among the three heterostylous species of the Polygonus, P. japonica, F. esculentum, and P. senticosa, based on investigations regarding the floral structure, ecological and physiological traits, the results of which are summarized as follows: (1) P. japonica, although it exhibits typical dimorphism, has undergone so high a differentiation between long and short styled that its long styled individuals behave as if they were female; and short styled individuals as if male. In long-styled individuals, filament, anther, and pollen grains show signs of degeneration, most of the pollen being abortive. On the other hand, in short styled individuals, the filament, anther, and pollen grains have attained remarkable development; the pollen grians are large and fertile. In short-plant the fertilized flowers readily drop off in every stage of their embryo development. This species has completely lost the self-fertile property, which is characteristic of the non-dimorphic Polygonum genus. Although this specsei typically exhibits the physiological characteristics of the non-dimorphic Polygonum genus. Although this specisei typically exhibits the physiological characteristics of dimorphism in controlled pollination, the short-styled individuals bear no seed in nature, thus misleading taxonomists to idenfity the short-styled plant as male. 2) The morphological feature of the flower organ of P. senticosa obviously indicates definite dimorphism. Physiologically, however, no differentiation towards dimorphism was observed, the species still retaining, both in long and short-individuals, the self-fertile property common to the Polygonum genus. Elaborate examinations revealed that regardless of the modes of pollination, both fertiization and seed setting flourish, no differentiation betwen legitimate and illegitimate unions being recognizable. This sort of physiological property has not been observed in the investigations of other heterostylous plants. It is assumed that this species is differentiated structurally into dimorphism, but not yet physiologically. In nature, however, this plant would have more opportunities to be cross-pollinated, i.e., legitimately combined, than self-pollinated because of the development of two forms of flowers. 3) In terms of heterostylism, the F. esculentum just occupies the intermediate position between P. japonica and P. senticosa structurally, ecologically, and physiologically. Doescription of some of the physiological behavior of the plant will suffice to demonstrate the above facts. While P. japonica has completely lost its self-fertile property, P. senticosa still retains it wolly. In F. esculentum 2-6% of self-fertility is the result in illegitimate combination. There occur occasionally hereditary self fertile individuals among some of the F. or 20 min. irradiation plot, when they reach any stage of the same bacterial population. In addition to this increase of total population in the plots with the more dose of UV light irradiation, it seems that the more dose of UV light irradiation is the more shortened the generation time of Azotobacter. Therefore, it is clear that variation of reproductive rate must be, mere or less, due to the genetic effects induced by UV light irradiation. On the other hand, the lag phase or logarithmic growth phase in nonirradiated culture is shortened prominently, and this must be due to the difference in bacterial number of the original inoculm. The generation time of Azotobacter is shortened by exogeneous treatment of nuclei acid derivatives, and the degree is greater in case of DNA derivatives than RNA dervatives. W.H. Price reported that the rate of ribose nucleic acid to protein in Staphylococcus muscae is proportional to the generation time: that is the faster the cell can form ribose nucleic acid, the more rapid its growth. This explains the shortening of generation time by exogeneous RNA derivatives in this work reasonably. On the other hand, it is well known that the desoxyribose nuclic acid content per cell is constant and independent of the generation time. A.D. Laren and W.N. Takahashi reported that the infectious RNA from TMV is 6 times as sensitive to inactivation by UV as it is in the form of intact virus, and that inactivation of infectious TMV involves onlu a local change on RNA chain. But, the effect of exogeneous DNA in this work suggests that irradiated living cell which cotain DNA bring about some change on DNA moleculs as well as RNA molecules. And if the mutagenic effects of UV take into consideration, it is very reasonable. Therefore, it is clear that the variation of the generation time by UV irradiation is, more or less, due to the genetic effects. Therefore, it seems that the shortness of the average lifewpan of Azotobacter by UV irradiation is resulted not only from the influence of the environmental conditions, but also from the variation of genetic factor of the individual.

  • PDF

Evaluation of Cultivation Characteristics according to NO3- Ratio of Nutrient Solution for Korean Melon in Hydroponic Culture (양액의 NO3- 비율이 수경재배 참외의 생육과 수량에 미치는 영향)

  • Do Yeon Won;Ji Hye Choi;Chang Hyeon Baek;Na Yun Park;Min Gu Kang;Young Jin Seo
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.249-255
    • /
    • 2023
  • Korean melon (Cucumis melo L.) is grown mostly in Northeast Asia area, and as a fruit mainly produced in Korea, the yield per unit area continues to improve, but the cultivation method is limited to soil cultivation, so it is necessary to develop hydroponic cultivation technology for scale and labor-saving is needed. As the ratio of NO3- increased, the plant height, the leaf length, the leaf width, and the internode length became longer and larger. On the other hand, the SPAD value decreased. The lower the ratio of NO3-, the faster the female flower bloom, and there was no difference in fruit maturity between treatments. There was no difference in the shape of fruit according to the ratio of NO3-, and the hardness was higher as the ratio of NO3- was lower. The total yield from March to July was KM3 5,650 kg/10a and KM1 4,439 kg/10a, 27% higher in KM3 and, in particular, 36% higher in quantity from March to May, when Korean melon prices were high season. Therefore, it was judged that it would be appropriate to supply NO3- suitable for hydroponic cultivation of Korean melon, which was formalized in December and produced from spring, at the level of 6.5 to 10 me·L-1.

The embryological studies on the interspecific hybrid of ginseng plant (Panax ginseng x P. Quiuquefolium) with special references to the seed abortion (인삼의 종간잡종 Panax ginseng x P Quinquefoilium의 발생학적 연구 특히 결실불능의 원인에 관하여)

  • Jong-Kyu Hwang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.5 no.1
    • /
    • pp.69-86
    • /
    • 1969
  • On the growing of the interspecific hybrid ginseng plant, the phenomena of hybrid vigoures are observed in the root, stem, and leaf, but it can not produce seeds favorably since the ovary is abortive in most cases in interspecific hybrid plants. The present investigation was undertaken in an attempt to elucidate the embryological dses of the seed failure in the interspecific hybrid of ginseng (Panax Ginseng ${\times}$ P. Quinque folium). And the results obtained may be summarized as follows. 1). The vegetative growth of the interspecific hybrid ginseng plant is normal or rather vigorous, but the generative growth is extremely obstructed. 2). Even though the generative growth is interrupted the normal development of ovary tissue of flower can be shown until the stage prior to meiosis. 3). The division of the male gameto-genetic cell and the female gameto-genetic cell are exceedingly irregular and some of them are constricted prior to meiosis. 4). At meiosis in the microspore mother cell of the interspecific hybrid, abnormal division is observed in that the univalent chromosome and chromosome bridge occure. And in most cases, metaphasic configuration is principally presented as 23 II+2I, though rarely 22II+4I is also found. 5). Through the process of microspore and pollen formation of F1, the various developmental phases occur even in an anther loclus. 6). Macro, micro and empty pollen grains occur and the functional pollen is very rare. 7). After the megaspore mother cell stage, the rate of ovule development is, on the whole, delayed but the ovary wall enlargement is nearly normal. 8). Degenerating phenomena of ovules occur from the megaspore mother cell stage to 8-nucleate embryo sac stage, and their beginning time of constricting shape is variously different. 9). The megaspore arrangement in the parent is principally of the linear type, though rarely the intermediate type is also observed, whereas various types, viz, linear, intermediate, Tshape, and I shape can be observed in hybrid. 10). After meiosis, three or five megaspore are some times counted. 11). Charazal end megaspore is generally functional in the parents, whereas, in F1, very rarely one of the center megaspores (the second of the third megaspore) grows as an embryo sac mother cell. 12). In accordance with the extent of irregularity or abnormality in meiosis, division of embryo sac nuclei and embryo sac formation cause more nucellus tissue to remain within th, embryo sac. 13). Even if one reached the stage of embryo sac formation, the embryo sac nuclei are always precarious and they can not be disposed to theil proper, respective position. 14). Within the embryo sac, which is lacking the endospermcell, the 4-celled proembryo, linear arrangement, is observed. 15). Through the above respects, the cause of sterile or seed failure of interspecific hybrid would be presumably as follows, By interspecific crossing gene reassortments takes place and the gene system influences the metabolism by the interference of certain enzyme as media. In the F1 plant, the quantity and quality of chemicals produced by the enzyme system and reaction system are entirely different from the case of the parents. Generally, in order to grow, form, and develop naw parts it is necessary to change the materials and energy with reasonable balance, whereas in the F1 plant the metabolic process becomes abnormal or irregular because of the breakdown of the balancing. Thus the changing of the gene-reaction system causes the alteration of the environmental condition of the gameto-genetic cells in the anther and ovule; the produced chemicals cause changes of oxidatio-reduction potential, PH value, protein denaturation and the polarity, etc. Then, the abnormal tissue growing in the ovule and emdryo sac, inhibition of normal development and storage of some chemicals, especially inhibitor, finally lead to sterility or seed failure. Inconclusion, we may presume that the first cause of sterile or seed abortion in interspecific hybrids is the gene reassortment, and the second is the irregularity of the metabolic system, storage of chemicals, especially inhibitor, the growth of abnormal tissue and the change of the polarity etc, and they finally lead to sexual defect, sterility and seed failure.

  • PDF