• Title/Summary/Keyword: felling

Search Result 109, Processing Time 0.02 seconds

Tree-Ring Dating of Wood Elements Used for Tongmyungjeon Hall of Changkyung Palace - The Year of Transforming from Ondol Rooms to Wooden Floors- (창경궁 통명전 목부재의 연륜연대 측정 -방에서 마루로 변형된 시기규명을 중심으로-)

  • Park, Won-Kyu;Son, Byung-Wha;Han, Sang-Hyo
    • Journal of architectural history
    • /
    • v.12 no.3
    • /
    • pp.53-63
    • /
    • 2003
  • Tree-ring chronologies can be used to date historical buildings by matching them with the chronologies of living trees or previously dated samples. Tree-ring dating gives a calendar year to each tree ring and produces the felling dates of logs or woods which had been used for buildings. In Korea, several chronologies of Japanese red pine(Pinus densiflora Sieb. et Zucc., 'sonamu' in Korean), a major species for the wooden building materials, have been developed and used for dating historical buildings. In this study, Tongmyungjeon Hall of Changkyung Palace in Seoul was dated by tree rings. The present Tongmyungjeon Hall was known to be reconstructed in A.D. 1834 after burned-out in A.D. 1790. We sampled total of 122 wood samples which were replaced during the repair process in 2002-2003. Felling dates of the samples were determined by the dendrochronological crossdating method. Crossdating method employs graphic comparison of the master patterns (ring-width chronologies of known dates) with those of the sample chronologies of unknown dates. Tree-ring dates confirmed that the reconstruction of 1834 utilized second-handed timbers as well as fresh-cut ones. The felling dates of wooden floor frames were mostly A.D. 1913, indicating the 'Ondol' floors were changed to the wooden floors around 1914 when the Japanese rulers brutally destroyed the royal Korean Palaces and transformed palace buildings to their offices or exhibition halls after occupying Korea in 1910. This study proved that tree-ring dating was a useful and accurate method to identify the critical dates for the history of Korean traditional buildings.

  • PDF

Harvesting Productivity and Cost of Whole-Tree Clear Cutting Using a Tower Yarder in a Larix leptolepis Stand (낙엽송 개벌 임분에서 타워야더를 이용한 전목수확시스템의 작업비용 분석)

  • Cho, Min-Jae;Cho, Koo-Hyun;Oh, Jae-Heun;Han, Han-Sup;Cha, Du-Song
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.107-112
    • /
    • 2014
  • The productivity and cost of clear cutting operations were examined to broaden our knowledge on the harvesting system in a Larix leptolepis stand of Korea. The harvesting system was divided into tree operations which were chainsaw (STIHL MS440) felling, tower yarder (Koller301-4) yarding and harvester (WOODY H50) processing. The average cycle time of felling, yarding and processing were 98 s/cycle, 245 s/cycle and 150 s/cycle. The total stump-to-pile operational productivity was 43.07 $m^3/hr$. The highest production activity was the felling 17.93 $m^3/hr$, followed by the productivity of processing 15.62 $m^3/hr$ and then by the productivity of yarding 9.52 $m^3/hr$. In addition the total stump-to-pile operational cost was 24,086 $won/m^3$. The highest cost activity was the yarding 14,557 $won/m^3$ (60.4% of the total cost), followed by the costs of processing 8,461 $won/m^3$ (35.2%) and then by the costs of felling 1,068 $won/m^3$.

Productivity and Cost of Tree-length Harvesting Using Cable Yarding System in a Larch (Larix leptolepis) Clear-cutting Stand

  • Jeong, Eungjin;Cho, Koohyun;Cho, Minjae;Choi, Byoungkoo;Cha, Dusong
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.147-153
    • /
    • 2017
  • The purpose of this study was to examine productivity and cost of tree-length harvesting using cable yarding system in a larch (Larix leptolepis) clear-cutting stand located in Pyeongchang-gun, Gangwon-do. We used tree-length harvesting method using cable yarding system with a tower yarder HAM300. The productivity was $17.6m^3/hr$ for felling, $12.4m^3/hr$ for delimbing, $4.2m^3/hr$ for yarding, and $8.1m^3/hr$ for processing. The total cost of the harvesting system was $48,381won/m^3$, which was majorly composed of yarding operation cost, at $40,169won/m^3$ (79.3%), while felling had the lowest cost at $1,154won/m^3$ (4.1%). Major factors affecting felling and processing productivity was tree volume and the number and thickness of branches for delimbing productivity. In addition, we suggest that training and education for machine operators were critical to improve yarding productivity.

A Case Study on Explosive Demolition of Cylindrical Silo (원통형 사일로 발파해체 시공사례)

  • Park, Hoon;Jang, Seong-Ok;Park, Hyong-Ki;Kim, Nae-Hoi;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.52-63
    • /
    • 2008
  • Recently the demand of demolition for the unnecessary cylindrical silo structure is increasing due to deterioration and unsatisfactory functional conditions and the issue of demolition is becoming a major highlight. This case study introduced the explosive demolition of the cylindrical silo structure by felling method. The results of explosive demolition conducted on cylindrical silo structure using the felling method show, A silo had collapsed precisely according to estimated direction but in case of B silo there was a minor difference. The lower colunms and ring girder support was designed to the hinge line but in reality the lower colunms of the silo did not do its structural support role and only the ring girder support did its role successfully. As for the impact vibration, most of the measurements were within the estimated range.

A Study for Felling Impact Vibration Prediction from Blasting Demolition (발파해체시 낙하충격진동 예측에 관한 연구)

  • 임대규;임영기
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.43-55
    • /
    • 2004
  • Use term of tower style construction exceeds recently. Accordingly, according to construction safety diagnosis result, achieve removal or Improvement construction. But when work removal, must shorten shut down time. Therefore, removal method of construction to use blasting demolition of construction is very profitable. Influence construction and equipment by blasting vibration and occurrence vibration caused by felling impact. Is using disadvantageous machine removal method of construction by and economic performance by effect of such vibartion. Therefore, this research studied techniques to forecast vibartion level happened at blasting demolition and vibration reduction techniques by use a scaled model test.

Felling Productivity in Korean Pine Stands by Using Chain Saw (체인톱을 이용한 잣나무의 벌도작업 공정 분석)

  • Han, Won Sung;Cho, Koo Hyun;Oh, Jae-Heun;Song, Tae-Young;Kim, Jae-Won;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.4
    • /
    • pp.451-457
    • /
    • 2009
  • This study was conducted to evaluate the felling productivity by chain saw in thinning operation of Korean pine (Pinus koraiensis) stands. Time study data were collected from 4 thinning site in Korean pine stands. This study derived a regression model to estimate the average felling cycle time for evaluating the productivity in felling, which was used to analyze the felling productivity by thinning period. In the study sites, the average felling cycle time per a tree was 463 sec/cycle and the productivity was $2.26m^3/hr$. Thinning period in Korean pine is divided into three groups by producing purposes; small-diameter log, medium-diameter log, and large-diameter log. And analyzed working time and productivity from thinning period fixed by producing purposes. For the small-diameter log producing purpose estimated to be thinning period operated once when the mean DBH was 16 cm and its productivity was $8.94m^3/man{\cdot}day$. For the medium-diameter and large-diameter log producing purposes, thinning period was twice and three times when the mean DBH of the 1st and 2nd thinning period was 16 cm and 21 cm, and its productivity was $9.06m^3/man{\cdot}day$ and $10.86m^3/man{\cdot}day$. The 30 cm in DBH and $15.12m^3/man{\cdot}day$ in productivity was operated 3rd thinning for the large-diameter log producing purposes.

Productivity and Cost of Mechanized Felling and Processing Operations Performed with an Excavator-based Stroke Harvester by Tree Species (수종에 따른 스트로크 하베스터의 벌도⋅조재작업 생산성 및 비용)

  • Yun-Sung, Choi;Min-Jae, Cho;Ho-Seong, Mun;Jae-Heun, Oh
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.567-582
    • /
    • 2022
  • Chainsaw use for motor-manual timber harvesting in South Korea is associated with worker safety issues. However, forestry operations such as timber harvesting have already been mechanized to reduce hazards to workers and increase productivity. This study analyzed the productivities and costs of felling and processing, felling and processing using an excavator-based stroke harvester for Pinus rigida and Quercus mongolica stands. To efficiently operate the stroke harvester, we developed a regression equation to estimate the productivities of felling and processing, felling, and processing operations,and we conducted sensitivity analysis of the operation costs using DBH and machine utilization. The felling and processing productivity was 6.53 and 4.02 m3/SMH for P. rigida a nd Q. mongolica, respectively, and the cost was 17,983 and 29,210 won/m3, respectively. The felling productivity for P. rigida a nd Q. mongolica wa s 40.9 and 23.0 m3/SMH, respectively, and the cost was 2,667 and 4,743 won/m3, respectively. The processing productivity for P. rigida and Q. mongolica was 8.25 and 7.75 m3/SMH, respectively, and the cost was 15,296 and 16,283 won/m3, respectively. In the developed regression equation, the DBH, traveling distance, and number of cuttings were found to be important factors (p<0.05). Therefore, it is necessary to construct a DB considering the various conditions and species associated with harvester operations, and further research is needed to increase the accuracy of predicting operation productivity and costs.

Application of Advanced Blast Demolition Simulation Method to the Drill and Blast Design for Demolishing Cylindrical Structures (원통형 구조물의 발파해체설계에 대한 최신 발파해체 시뮬레이션 기법의 적용)

  • Park, Hoon;Suk, Chul-Gi;Kim, Seung-Kon
    • Explosives and Blasting
    • /
    • v.26 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • In order to complete successfully the demolition of a silo structure by means of felling method, structural properties and the geometric design of blast mouth have to be considered. In this study, a commercial software, 3-dimensional applied element analysis (3D AEM), was used to investigate the effect of the geometrical parameters of blast mouth on the collapse behavior of the silo structure.

Study for new direction of Forest policy (한국임정(韓國林政)의 전환방향(轉換方向))

  • Chi, Yong Ha
    • Journal of Korean Society of Forest Science
    • /
    • v.3 no.1
    • /
    • pp.32-35
    • /
    • 1963
  • There are 3 kinds of forest managements: One of them is forest utilization management which collects abundant forest resources by felling the trees: the second of them is scientific forest management which cultivates forest resources; and the last one is emergency aid forest management, needed by the forest resources davastation, for the surposes of soil conservation and preventing the indirect damages. During the 36 years of Japanese occupation, they pillaged 600 to 800 million cubic meters of the forest resources, in the condition of the colonial system. After the emancipation from the Japanese occupation, the national soil conservation work has been practiced for 18 years without correcting the Japanese forest management (which means felling system); therefore the essential in the forest, conservation works is to get rid of imitating the Japanese pillage management so as to turn the direction of the forestry policy to the emergency aid management which means forest investment.

  • PDF

Harvesting Cost and Productive of Tree-Length Thinning in a Pinus densiflora Stand Using the Tower Yarder (HAM300)

  • Cho, Minjae;Cho, Koohyun;Jeong, Eungjin;Lee, Jun;Choi, Byoungkoo;Han, Sangkyun;Cha, Dusong
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.189-195
    • /
    • 2016
  • Logging equipment and method have a major influence on harvesting productivity and cost. This study investigated the productivity and operational costs of tree-length cable yarding system using HAM300, a domestically developed tower yarder. We tested HAM300 for thinning operation in Pinus densiflora stands at Gangreung, Gangwon-do on April, 2014. To assess the productivity we conducted time study for each stage of the operation. When the average time/cycle was examined for each stage of the operation, the longest was for yarding (241 sec), followed by delimbing (237 sec), felling (153 sec), and processing (103 sec). Furthermore, productivity for felling was $8.6m^3/hr$, followed by delimbing ($5.1m^3/hr$), yarding ($3.5m^3/hr$), and processing ($8.1m^3/hr$). The total cost for the tree-length logging system was $58,446won/m^3$, of which the majority was incurred by the yarding cost at $46,217won/m^3$ (79.3%), whereas the lowest cost was for felling at $2,359won/m^3$ (4.1%). We suggest that it is necessary to foster specialized operators and provide training in operating the tower yarder thereby implementing efficient harvesting system resulting from low-cost yarding.