• Title/Summary/Keyword: feedwater heater tube

Search Result 6, Processing Time 0.022 seconds

Prediction of Internal Tube Bundle Failure in High Pressure Feedwater Heater for a Power Generation Boiler by the Operating Record Monitoring (운전기록 모니터링에 의한 발전보일러용 고압 급수가열기 내부 튜브의 파손예측)

  • Kim, Kyeong-seob;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.2
    • /
    • pp.56-61
    • /
    • 2019
  • In this study, the failure analysis of the internal tube occurred in the high pressure feedwater heater for power generation boiler of 500 MW supercritical pressure coal fired power plant was investigated. I suggested a prediction model that can diagnose internal tube failure by changing the position of level control valve on the shell side and the suction flow rate of the boiler feedwater pump. The suggested prediction model is demonstrated through additional cases of feedwater system unbalance. The simultaneous comparison of the shell side level control valve position and the suction flow rate of the boiler feedwater pump compared to the normal operating state value, even in the case of the high pressure feedwater heater for the power boiler, It can be a powerful prediction diagnosis.

A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater (급수가열기 동체 감육 현상 규명을 위한 유동해석 연구)

  • Kim, Kyung-Hoon;Hwang, Kyeong-Mo;Kim, Sang-Nyung
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • Feedwater flowing tube side of number 5 high pressure feedwatrr heaters was heated by extracting steam from high pressure turbine and draining water from moisture separators and number 6 high pressure feedwater heaters and supplied into steam generators. Because the extracting steam from the high pressure turbine is two phase fluid of high temperature, high pressure, and high speed and flows to inverse direction after impinging to impingement baffle. the shell wall of the number 5 high pressure feedwater heater may be affected by flow accelerated corrosion. On May 14, 1999, Point Beach Nuclear Plant (PBNP) with operating at full power experienced a steam leak from rupture of shell side of number 4B feedwater heater. Also, d domestic nuclear power plant experienced a severe wall thinning of shell side of number 5A and 5B feedwater heaters. This paper describes the fluid mixing analysis study using PHOENICS code in order to get at the root of the shell wall thinning of the feedwater heaters. The sections included in the fluid mixing analysis model are around the number 5h feedwater heater shell including the extracting pipeline. To identify the relation between the local velocities and wall thinning. the local velocities according to the analysis results were compared with the distribution of the shell wall thickness by ultrasonic test.

  • PDF

A Stress Analysis of Feeedwater Heater Shell in Nuclear Power Plant (원전 급수가열기 동체 응력 해석)

  • Song, Seok-Yoon;Kim, Hyung-Nam
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Feedwater Heaters are important components in a nuclear power plant. As the age of heater increases, the maintenance cost required for continuous operation also increases. Most heaters have the carbon steel shells, tube support plates and flow baffles. The carbon steel is susceptible to flow-accelerated corrosion. This is especially true if the flow has a two-phase mixture of steam and condensate. The wall thinning around the wet steam entrance area of the shell is inevitable during some long term operation. The structural integrity of the feedwater heater shell affects the safe operation of the nuclear power plant. Therefore, it is needed for the thinned shell to be repaired. The maintenance method for preventing failure of the shell should be determined by investigating various factors including the stress distribution of thinned area. The stress analysis of the shell including the steam entrance region is studied in this paper. The results of thinned shell is compared with that of intact shell.

Thermal Stress Estimation due to Temperature Difference in the Wall Thickness for Thinned Feedwater Heater Tube (감육된 급수가열기 튜브의 두께 방향 온도차이에 의해 발생하는 열응력 평가)

  • Dinh, Hong Bo;Yu, Jong Min;Yoon, Kee Bong
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.1-9
    • /
    • 2019
  • A major stress determining the remaining life of the tube in feedwater heater of fossil fuel power plant is hoop stress by the internal pressure. However, thermal stress due to temperature difference across the wall thickness also contributed to reduce the remaining life of the tube. Therefore, thermal loading must be considered even though the contribution of internal pressure loading to the stresses of the tube was known to be much higher than that of the thermal loading. In this study, thermal stress of the tubes in the de-superheating zone was estimated, which was generated due to the temperature difference across the tube thickness. Analytic equations were shown for determining the hoop stress and the radial stress of the tube with uniform thinning and for the temperature across the tube thickness. Accuracy and effectiveness of the analytic equations for the stresses were verified by comparing the results obtained by the analytic equations with those obtained from finite element analysis. Using finite element analysis, the stresses for eccentric thinning were also determined. The effect of heat transfer coefficient on thermal stress was investigated using series of finite element analyses with various values of heat transfer coefficient for both inner and outer surface of the tube. It was shown that the effect of heat transfer coefficient at outer surface was larger than that of heat transfer coefficient at inner surface on the thermal stress of the tube. Also, the hoop stress was larger than the radial stress for both cases of uniformly and eccentrically thinned tubes when the thermal loading was only considered without internal pressure loading.

Visualization Experiment for Nucleate Boiling Bubble Motion on a Horizontal Tube Heater Fabricated with Flexible Circuit Board (연성회로기판 기반 수평전열관 표면의 비등기포거동 가시화 실험 연구)

  • Kim, Jae Soon;Kim, Yu-Na;Park, Goon-Cherl;Cho, Hyoung Kyu
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.2
    • /
    • pp.52-60
    • /
    • 2016
  • The Passive Auxiliary Feedwater System(PAFS) is one of the advanced safety concepts adopted in the Advanced Power Reactor Plus(APR+). To validate the operational performance of the PAFS, detailed understanding of a boiling heat transfer on horizontal tube outside is of great importance. Especially, in the mechanistic boiling heat transfer model, it is important to visualize the phenomena but there are some limitations with conventional experimental approaches. In the present study, we devised a heater based on the Flexible Printed Circuit Board (FPCB) for a more comprehensive visualization and subsequently, a digital image processing technique for the bubble motion measurement was established. Using the measurement technique, important parameters of the nucleate boiling are analyzed.