• Title/Summary/Keyword: feedrate

Search Result 195, Processing Time 0.029 seconds

Cycle Reduction Simulation for Turning Process (선삭 가공 사이클 단축 시뮬레이션)

  • Kim, Sun-Ho;Cho, Hang-Deuk;Kim, Tae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Productivity of machining using machine tools is affected by cutting conditions such as cutting speed, feedrate and depth. However, undesirable conditions that lengthen the machining cycle and shorten the tool life occur frequently because determination of cutting condition is known to depend on human experience. This paper presents a method of cycle reduction by removing undesirable conditions. For cycle reduction, maximum cutting load is determined using commercial FEM simulation code. The feedrate in the NC program is altered based on a predetermined cutting load value. To make a decision on the proposed effectiveness, a simulation is performed for the brake hub parts of an automobile. From the evaluation, it was found that the cycle reduction was under 15%.

NURBS Surface Interpolator for Constant Cutting Forces in Ball-End Milling (볼엔드 밀링에서의 일정 절삭력을 위한 NURBS 곡면 인터폴레이터)

  • Ji, Seong-Cheol;Gu, Tae-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1888-1896
    • /
    • 2002
  • This study presents a new type of CNC interpolator that is capable of generating cutter paths for ball-end milling of NURBS surfaces. The proposed surface interpolator comprises real-time algorithms for cutter contact (CC) path scheduling and CC path interpolator. Especially in this study, a new interpolator module to regulate cutting forces is developed. This propose algorithm utilizes variable-feedrate commands along the CC path according to the curvature of machined surfaces during the interpolation process. Additionally, it proposes an OpenGL graphic library for computer graphics and animation of interpolated tool-position display. The proposed interpolator is evaluated and compared with the existing method based on constant feedrates through computer simulations.

Characteristics of Grinding Force and Surface Roughness by CBN and WA Wheel (CBN과 WA숫돌에 의한 연삭에서 연삭력과 표면거칠기 특성)

  • 하만경;곽재섭;양재용;정영득;심성보;류인일
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.26-31
    • /
    • 2002
  • In this study an experimental investigation was conducted to find the grinding characteristics of ceramics, STD11 and STS304 materials. The grinding force and the microscopic observation of the workpieces were obtained in surface grinding. Grinding characteristics of ceramics were inspected through the microscopic examination the cutting force, and the surface roughness. It has been found that the finding force of ceramics is relatively low as compared to that of steels and that CBN wheel has an excellent performance. The surface roughness was measured according to the feedrate and the depth of out.

Analysis on Surface Characteristics of the Workpiece in the Grinding by CBN Wheel (CBN 숫돌을 이용한 연삭에서 공작물의 표면성상 분석)

  • Lee, Y. S.;Kwak, J. S.;Ha, M. K.;Koo, Y.;Yoon, M. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1105-1108
    • /
    • 2001
  • In these days, according s the increase of technological development the part demension goes up for ultra-precision. It is grinding behavior that is important processing which directly influences by machining accuracy at product quality with the net shape manufacturing. In this study, by using CBN wheel an analysis carried out for workpiece's profiles and its characteristics by measuring grinding force and surface roughness. Workpiece materials were used STD11, SUS304 and STB2 varing condition of feedrate and depth of cut.

  • PDF

Real-Time Variable-Feedrate NURBS Surface Interpolator (실시간 가변속 NURBS 곡면 인터폴레이터)

  • 구태훈;지성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.371-374
    • /
    • 1997
  • This study presents a new type of real-t~me CNC interpolator that is capable of generating cutter paths for ball-end milling of NURBS surfaces. The proposed surface interpolator comprises real-time algorithms for cutter-contact (CC) path scheduling and CC path interpolation. Especially, in this study, a new interpolator module to regulate cutting forces is developed. This proposed algorithm utilizes variable-feedrate commands according to the curvature of machined surfaces. The proposed interpolator is evaluated and compared with the conventional method based on constant feedrates through computer simulation.

  • PDF

Feedrate Scheduling for High Speed Machining Based on an Improved Cutting Force Model (향상된 절삭력 모델을 이용한 고속 가공의 이송속도 스케줄링)

  • 이한울;고정훈;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.141-144
    • /
    • 2003
  • This paper proposes an analytical model of off-line feed rate scheduling to obtain an optimum feed rate for high speed machining. Off-line feed rate scheduling is presented as an advanced technology to regulate cutting forces through change of feed per tooth, which directly affects variation of uncut chip thickness. In this paper, the feed rate scheduling model was developed using a mechanistic cutting force model using cutting-condition-independent coefficients. First, it was verified that cutting force coefficients are not changed with respect to cutting speed. Thus, the feed rate scheduling model using the cutting-condition-independent coefficients can be applied to set the proper feed rates for high speed machining as well as normal machining. Experimental results show that the developed fred rate scheduling model makes it possible to maintain the cutting force at a desired level during high speed machining.

  • PDF

Feedrate Optimization in the Ball Endmilling Process Considering Shape Features (볼 엔드밀 가공시 형상특징을 고려한 이송속도의 최적화에 관한 연구)

  • Kim, Byeong-Hee
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.257-265
    • /
    • 1996
  • When machining of a free-form surface with a ball endmill it is very important to select proper cutting conditions considering the geometrical shape of a workpiece to make the production more effective and reduce the machining time. Even though the same cutting conditions and materials are used, the cutting system of different geometry part machining shows the different static/dynamic characteristics. In this study, through various cutting experiments, we can construct the data base of stable cutting conditions for the machining of a Zine Alloy. We can get some relational plots between the optimal feedrates and classified shape features and parameters. On the basis of these results, we can develop the feedrate optimization program OptiCode. The developed program make it possible to reduce the cutting time and increase the machining accuracies.

  • PDF

추정된 절삭력 신호를 이용한 선삭력 제어

  • 허건수;김재옥
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.173-179
    • /
    • 2000
  • While a cutting tool is machining a workpiece at various cutting depth, the feedrate is usually selected based on the maximum depth of cut. Even if this selection can avoid power saturation or tool breakage, it is very conservative compared to the capacity of the machine tools and can reduce the productivity significantly. Many adaptive control techniques that can adjust the feedrate to maintain the constant cutting force have been reported. However, these controllers are not very widely used in manufacturing industry because of the limitations in measuring the cutting force signals. In this paper, turning force control systems based on the estimated cutting force signals are proposed. A synthesized cutting force monitor is introduced to estimate the cutting force as accurately as a dynamometer does. Three control strategies of PI, adaptive and fuzzy logic controllers are applied to investigate the feasibility of utilizing the estimated cutting force fur turning force control. The experimental results demonstrate that the proposed systems can be easily realized in CNC lathe with requiring little additional hardware.

  • PDF

Tool Wear Monitoring System in CNC End Milling using Hybrid Approach to Cutting Force Regulation (하이브리드 방식의 절삭력 평준화를 통한 CNC 엔드 밀링에서의 공구 마모 모니터링 시스템)

  • Lee, Kang-Jae;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.20-29
    • /
    • 2004
  • A Tool wear monitoring system is indispensable for better machining productivity with guarantee of machining safety by informing the tool changing time in automated and unmanned CNC machining. Different from monitoring using other signals, the monitoring of spindle current has been used without requiring additional sensors on machine tools. For the reliable tool wear monitoring, current signal only of tool wear should be extracted from other parameters to avoid exhaustive analyses on signals in which all parameters are fused. In this paper, influences of force components of parameters on measured spindle current are investigated and a hybrid approach to cutting force regulation is employed for tool wear signal extraction in the spindle current. Finally, wear levels are verified with experimental results by means of real-time feedrate aspects changed to regulate the force component of tool wear.

  • PDF

Chatacteristics of Deep Hole Machining for Duralumin Using Periodical Change of Feedrate (이송속도의 주기적 변화를 이용한 듀랄루민재의 심공가공 특성)

  • 김용제
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.240-245
    • /
    • 2000
  • This paper presents the experimental study of drilling for duralumin A2024 with intermittently decelerated feed rate. It is achieved through a programmed periodic increase and decrease in the feed rate using a machining center. The following experimental result were performed with the objective of solving chip to disposal problems. In conventional drilling of aluminum, long continuous chips are produced that wind around the drill causing difficulties in eliminating chips from the cutting zone. In order to acquire the basic data necessary to regulate the chip profile, the relationship between cutting variables and chip shape was investigated. The following conclusions are established from the experimental results. At a suitable feed fluctuation ratio, intermittently decelerated feed drilling proved successful in breaking chips to appropriate lengths while maintaining stable cutting. Thus, it is an effective method for improving chip disposal. The amplitude of the dynamic component of cutting force in intermittent feed frilling is influenced by the feed fluctuation ratio.

  • PDF