• Title/Summary/Keyword: feedback-error

Search Result 982, Processing Time 0.022 seconds

Control of a magnetic levitation system via feedback error learning

  • Hao, Shuang-Hui;Yang, Zi-Jiang;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.345-350
    • /
    • 1993
  • This paper presents an on-line feedback error learning control algorithm for a magnetic levitation system. It will be shown that even in the case of abrupt changes of the system parameters and disturbanes, the control performance is still very satisfactory.

  • PDF

Relations of Classroom Goal Structure, Feedback, and Social Relationships to Students' Error Perception (교실성취목표구조, 피드백 유형, 교사 및 친구 관계가 초등학생의 실수에 대한 인식에 미치는 영향)

  • Yeon, Eun Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.336-345
    • /
    • 2019
  • To extend the potential benefits of error, the current study examined factors that affect students' error perception in classroom. An experimental design was used to measure relations of classroom goal structure, feedback, and social relationships on students' perception of error. A total 316 fourth, fifth, and sixth graders attending elementary schools participated as part of their regular class curriculum. Self-reported questionnaires were administered to measure students' perception of errors and relationships with teacher and peers, then students were manipulated by classroom goal structure and feedback. Results from multiple regression suggest that students' perception of learning from error has affected by relationships with peers at the most, then relationships with teacher and the type of feedback. Students' perception of risk taking for error also affected by relationships with peers and teacher, then the classroom goal structure. However, no classroom goal structure and feedback affect on their perception of thinking about error to improve their learning as well as error strain. These results imply how classroom climate should be structured to improve perception of errors to improve student's learning.

Performance Improvement of ARQ Protocol using HARQ Feedback Information in IEEE 802.16m Systems (IEEE 802.16m 시스템에서 HARQ 피드백 정보를 이용한 ARQ 프로토콜 성능 개선)

  • Lee, Jong-Min;Hong, Dae-Hyoung;So, Jae-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1136-1144
    • /
    • 2010
  • In this paper, the effects of HARQ feedback error are evaluated in IEEE 802.16m system when the HARQ and ARQ interactions that utilize the HARQ feedback information is used. Also, the HARQ and ARQ interaction scheme considering HARQ feedback errors are proposed. The HARQ and ARQ interaction scheme improve the system throughput by using the HARQ feedback information instead of the ARQ feedback message, which reduce retransmission time. However, errors in the HARQ feedback information generate severe performance degradation. Especially, the local NAK errors between HARQ feedback error critically degrade the performance, because the local NAK errors lead the loss of ARQ blocks. We propose a channel state-based schemes for HARQ and ARQ interactions to mitigate the throughput degradation due to HARQ feedback errors. Simulation results show that the proposed scheme improves the throughput and the delay performance.

Adaptive Feedback Interference Cancellation Algorithm Using Correlations for Adaptive Interference Cancellation System (적응 간섭 제거 시스템을 위한 상관도를 적용한 적응적 궤환 간섭 제거 알고리즘)

  • Han, Yong-Sik;Yang, Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.427-432
    • /
    • 2010
  • To reduce the outage probability and to increase the transmission capacity, the importance of repeaters in cellular systems is increasing. But a RF(Radio Frequency) repeater has a problem that the output of the transmit antenna is partially feedback to the receive antenna, which is feedback interference. In this paper, we proposed adaptive Sign-Sign LMS(Least Mean Square) algorithm using correlations for the performance enhancement of RF repeater. The weight vector is updated by using sign of input signal and error signal to the least squared error of the conventional algorithms. When compared with the conventional method, the proposed canceller achieves the maximum 10 dB performance gain in terms of the MSE(Mean Square Error).

Programming Learning Supporting System based on Error Feedback for Novices (에러 피드백 기반의 초보자를 위한 프로그래밍 학습 지원 시스템)

  • Jang, HyeSun;Choi, SookKyoung;Jun, SooJin;Yeom, YongChul;Lee, WonGyu
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.6
    • /
    • pp.1-10
    • /
    • 2007
  • Programming is emphasized in information(computer science) education course domestically and in foreign countries, and novices are given ample opportunities to experience programming. Programming error is a critical factor which makes it difficult to learn programming for novices. However, if they are given appropriate feedback, it can have positive influence on programming learning. In this paper, we design programming learning supporting system for novice through error feedback and provide some implementations for EPL 'Dolittle'. This system has four features as highlighting, guiding messages, object tree, and step-execution.

  • PDF

Design of Robust Controller for Systems with Time Delay (지연시간을 갖는 계통에 대한 강인한 제어기 설계)

  • 박귀태;이기상;김성호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.997-1005
    • /
    • 1990
  • Integral Error and State Feedback (IESF) controller which incorporates state feedback as a modern control scheme and integral action as a classical control scheme has better performance than that of conventional PID controller in linear time invariant system. But the structure of the IESF controller requires all the state variables of the system and is applicable only to pole assignable linear time invariant systems without time delay. Many industrial processes have large time delay and it is impossible to directly apply IESF control scheme to those processes. In this paper, a new controller structure, Modified Integral Error and State Feedback (MIESF) has been suggested in order to effectively control processes having time delay and its performance has been analyzed and its effectiveness has also been confirmed. As the proposed controller uses output feedback scheme based on integral error and state feedback (IESF) method, it can be simply designed by pole assignment algorithm irrespective of the order of the process. The MIESF controller can follow setpoint changes without overshoot. It is robuster than conventional Smith-Predictor plus PI(D) controller in case of occurring time delay mismatch and extra parameter mismatches between the process and the model. It can enhance control performance by intentional time delay mismatch.

  • PDF

Feedback-Based Iterative Learning Control for MIMO LTI Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.269-277
    • /
    • 2008
  • This paper proposes a necessary and sufficient condition of convergence in the $L_2$-norm sense for a feedback-based iterative learning control (ILC) system including a multi-input multi-output (MIMO) linear time-invariant (LTI) plant. It is shown that the convergence conditions for a nominal plant and an uncertain plant are equal to the nominal performance condition and the robust performance condition in the feedback control theory, respectively. Moreover, no additional effort is required to design an iterative learning controller because the performance weighting matrix is used as an iterative learning controller. By proving that the least upper bound of the $L_2$-norm of the remaining tracking error is less than that of the initial tracking error, this paper shows that the iterative learning controller combined with the feedback controller is more effective to reduce the tracking error than only the feedback controller. The validity of the proposed method is verified through computer simulations.

An adaptive decision feedback equalizer using error feedback (에러 궤환을 이용한 적응 결정 궤환 등화기)

  • 김동욱;한성현;은명수;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.7
    • /
    • pp.1706-1715
    • /
    • 1996
  • The decision feedback equalizer(DFE) received recent attention since it can compensate for channels with severe intersymbol interference(ISI) without as much noise enhancement as the linear equalizer(LE). In this paper, we propose a new DFE which can icrease the performance of DFE further by using error feedback. The performance increase is achieved by reducing correlation of error signal, which cannot be reduced by the feedforward or feedback filter. Hardware complexity for the proposed approcach is minimal since it requires only additional few taps to the conventional DFE. Based on theoretical analysis and computer simulations, the proposed approach is shown to be much more effective than the conventional DFE, especially for channels with large ISI.

  • PDF

Design of robust stable hybrid controllers for active noise/vibration control (능동 소음 및 진동 제어에 사용되는 강인안정한 하이브리드 제어기의 설계)

  • Oh, Shi-Hwan;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.431-436
    • /
    • 2000
  • Adaptive feed forward control algorithms based largely upon LMS approach have developed in recent two decades, and they have been widely applied to practical sound and vibration control problems in the case of the reference signal is available. Feedforward control can be applied only when reference signals can be measured or regenerated, while feedback controllers are used to reduce; sound and vibration when reference signals are not available. In recent years, hybrid control schemes in which adaptive feed forward controllers are combined with feedback ones have been studied based on simulations and experiments. The results have shown that the hybrid control may have better control performances in convergence speed and steady state error than the single control schemes. Hybrid control has the advantages of improving stability and performance as well as the disturbance rejection property. However, little effort has been made to the analysis or interpretation of hybrid control systems. In this study, we discussed the feedback controller effects on the stability of feed forward control algorithm in the presence of uncertain error path and a simple example showed that a stable feedback controller could make the feedforward controller unstable. A design criterion of feedback controllers is proposed in order to guarantee the stability of feedforward algorithms in the presence of error paths with uncertainties.

  • PDF

Position, Orientation, and Velocity Feedback Control Algorithms for Differential-Drive Bobile Robot (차동 구동형 이동 로보트의 위치, 방향 및 속도 궤환 제어 알고리즘)

  • 정용욱;박종국
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.63-72
    • /
    • 1997
  • The design and implementation of a drive wheel position, orientation, and velocity feedback control algorithm for a differential-drive mobile robot is described here. A new concept, the most significant error, is introduced as the control design objective. Drive wheel position, orientation, and velocity feedback control directly minimize the most siginificant error by coordinating the motion of the two drive wheels. The drive wheel position, orientation, and velocity feedback control algorithm is analyzed and experiments are conducted to evaluate its performance. The experimental results are shown that drive wheel position, orientation and velocity feedback control algorithm yields substantially smaller position and orientation errors than those of conventional methods.

  • PDF