• Title/Summary/Keyword: feed-forward

Search Result 535, Processing Time 0.028 seconds

Device Discovery in P2P Environment using Feed Forward Neural Network (FFNN을 사용한 P2P 디바이스 디스커버리)

  • Balayar Chakra B.;Kwon Ki-Hyeon;Kim Sang-Choon;Byun Hyung-Gi;Kim Nam-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.1223-1226
    • /
    • 2006
  • P2P(Peer to Peer) 기술은 1990년대 후반기부터 산업계 및 학계에 주목을 받고 있는 기술 분야중의 하나로 이 기술의 장점은 인터넷 환경에 산재하여 있는 컴퓨팅 파워, 공간, 네트워크 대역을 인터넷 기반으로 효과적으로 활용하여 협력작업을 가능하게 한다는데 있다. 최근에는 모바일 환경 응용을 위한 P2P 디바이스 탐색 분야에 관심사가 증대되고 있으며, P2P 시스템은 중앙통제 장치가 결여 되어 있기 때문에 중앙통제 장치 개입을 최소로 하면서 P2P를 운영하기 위한 효율적인 기법 및 체계가 요구되고 있다. 본 논문에서는 기존의 접근방법을 검토하여 FFNN(feed forward neural network)을 이용한 디바이스 탐색 기법을 제시한다. 제시한 FFNN은 BP(back propagation) 알고리즘을 통해 훈련하고 디바이스를 탐색한다. 제시한 시스템의 성능을 보이기 위해 일정한 계산량을 가지는 작업을 에이전트를 활용, 탐색된 디바이스간에 분배하여 처리한다. 본 논문에서는 제한된 자원을 가지는 디바이스 간에 P2P를 사용하는 기법에 대해 제시하였다.

  • PDF

On-Line Feed-Forward Dead-Time Compensation Method (온라인 전향 데드타임 보상기법)

  • 김현수;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.267-274
    • /
    • 2004
  • In this paper, a new on-line dead-time compensation method is proposed. The output voltage errors due to the dead-time effect is considered as disturbance voltages. The magnitude of the disturbance voltages is estimated using a time delay control technique and the disturbance voltages are calculated using the estimated values, measured currents, and position information. The calculated disturbance voltages are fed to voltage references in order to compensate the dead-time effect. The proposed method is applied to a PM synchronous motor drive system and implemented in a digital manner using a digital signal processor (DSP) TMS320C31. The experiments are carried out for this system to show the effectiveness of the proposed method and the results show the validity of the proposed method.

Design of hetero-hybridized feed-forward neural networks with information granules using evolutionary algorithm

  • Roh Seok-Beom;Oh Sung-Kwun;Ahn Tae-Chon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.483-487
    • /
    • 2005
  • We introduce a new architecture of hetero-hybridized feed-forward neural networks composed of fuzzy set-based polynomial neural networks (FSPNN) and polynomial neural networks (PM) that are based on a genetically optimized multi-layer perceptron and develop their comprehensive design methodology involving mechanisms of genetic optimization and Information Granulation. The construction of Information Granulation based HFSPNN (IG-HFSPNN) exploits fundamental technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks, and genetic algorithms(GAs) and Information Granulation. The architecture of the resulting genetically optimized Information Granulation based HFSPNN (namely IG-gHFSPNN) results from a synergistic usage of the hybrid system generated by combining new fuzzy set based polynomial neurons (FPNs)-based Fuzzy Neural Networks(PM) with polynomial neurons (PNs)-based Polynomial Neural Networks(PM). The design of the conventional genetically optimized HFPNN exploits the extended Group Method of Data Handling(GMDH) with some essential parameters of the network being tuned by using Genetie Algorithms throughout the overall development process. However, the new proposed IG-HFSPNN adopts a new method called as Information Granulation to deal with Information Granules which are included in the real system, and a new type of fuzzy polynomial neuron called as fuzzy set based polynomial neuron. The performance of the IG-gHFPNN is quantified through experimentation.

  • PDF

Unsupervised Real-time Obstacle Avoidance Technique based on a Hybrid Fuzzy Method for AUVs

  • Anwary, Arif Reza;Lee, Young-Il;Jung, Hee;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.82-86
    • /
    • 2008
  • The article presents ARTMAP and Fuzzy BK-Product approach underwater obstacle avoidance for the Autonomous underwater Vehicles (AUV). The AUV moves an unstructured area of underwater and could be met with obstacles in its way. The AUVs are equipped with complex sensorial systems like camera, aquatic sonar system, and transducers. A Neural integrated Fuzzy BK-Product controller, which integrates Fuzzy logic representation of the human thinking procedure with the learning capabilities of neural-networks (ARTMAP), is developed for obstacle avoidance in the case of unstructured areas. In this paper, ARTMAP-Fuzzy BK-Product controller architecture comprises of two distinct elements, are 1) Fuzzy Logic Membership Function and 2) Feed-Forward ART component. Feed-Forward ART component is used to understanding the unstructured underwater environment and Fuzzy BK-Product interpolates the Fuzzy rule set and after the defuzzyfication, the output is used to take the decision for safety direction to go for avoiding the obstacle collision with the AUV. An on-line reinforcement learning method is introduced which adapts the performance of the fuzzy units continuously to any changes in the environment and make decision for the optimal path from source to destination.

A RX Cancellation Loop Configyration for TX Power Amplifier Module (수신대역 Cancellation Loop를 갖는 송신단 전력 증폭기 설계)

  • Jeong, yong-Chae;Park, Jun-Seok;Ahn, Dal;Lim, Jae-Bong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1156-1160
    • /
    • 2000
  • The cancellation loop configuration for power amplifier module is proposed to reject the RX signals using feed-forward technique. In this paper, we implement the 1W-ampilfier module of WLL band to show validity of the proposed cancellation loop. The power amplifier module with the proposed cancellation loop can provide low TX insertion path loss due to duplexer and choice of loose RX attenuation characteristic for various wireless communication systems. It shows at least 90 % improved RX rejection characteristic compared to power amplifier module without RX band cancellation loop.

  • PDF

Robust Disturbance Suppression Control for AC Servo Motors (AC 서보모터에 대한 견실한 외란억제 제어)

  • Kim, Chang-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.839-848
    • /
    • 2012
  • In this paper, we propose a robust control scheme of AC servo motors to suppress disturbance torques effectively. The proposed controller consists of both a model based feed-forward controller and a stabilizing feedback controller. The feed-forward controller is designed such that the output of the nominal plant tracks perfectly the reference velocity command with desired dynamic characteristics. The feedback controller stabilizes the overall closed loop system. Furthermore, the feedback controller contains a free function that can be chosen arbitrarily. The free function can be designed so as to achieve both suppression of disturbances and robustness to model uncertainties. In order to illuminate the superior performance of the proposed control scheme to the conventional ones, we present some simulation results.

Research on the Mechanism of Neutral-point Voltage Fluctuation and Capacitor Voltage Balancing Control Strategy of Three-phase Three-level T-type Inverter

  • Yan, Gangui;Duan, Shuangming;Zhao, Shujian;Li, Gen;Wu, Wei;Li, Hongbo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2227-2236
    • /
    • 2017
  • In order to solve the neutral-point voltage fluctuation problem of three-phase three-level T-type inverters (TPTLTIs), the unbalance characteristics of capacitor voltages under different switching states and the mechanism of neutral-point voltage fluctuation are revealed. Based on the mathematical model of a TPTLTI, a feed-forward voltage balancing control strategy of DC-link capacitor voltages error is proposed. The strategy generates a DC bias voltage using a capacitor voltage loop with a proportional integral (PI) controller. The proposed strategy can suppress the neutral-point voltage fluctuation effectively and improve the quality of output currents. The correctness of the theoretical analysis is verified through simulations. An experimental prototype of a TPTLTI based on Digital Signal Processor (DSP) is built. The feasibility and effectiveness of the proposed strategy is verified through experiment. The results from simulations and experiment match very well.

Online Load Torque Ripple Compensator for Single Rolling Piston Compressor (싱글 로터리 컴프레셔의 온라인 부하 토크리플 보상기)

  • Gu, Bon-Gwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.457-462
    • /
    • 2014
  • Given their low cost, single rolling piston compressors (SRPC) are utilized in low-power room air-conditioning systems. The SRPC cycle is composed of one compression and discharge process per mechanical rotation. The load torque is high during the compression process of the refrigerants and low during the discharge process of the refrigerants. This load torque variation induces a speed ripple and severe vibration, which cause fatigue failures in the pipes and compressor parts, particularly under low-speed conditions. To reduce the vibration, the compressor usually operates at a high-speed range, where the rotor and piston inertia reduce the vibration. At a low speed, a predefined feed-forward load torque compensator is used to minimize the speed ripple and vibration. However, given that the load torque varies with temperature, pressure, and speed, a predefined load torque table based on one operating condition is not appropriate. This study proposes an online load torque compensator for SRPC. The proposed method utilizes the speed ripple as a load torque ripple factor. The speed ripple is transformed into a frequency domain and compensates each frequency harmonic term in an independent feed-forward manner. Experimental results are presented to verify the proposed method.

The Effect of Center of Pressure Displacement and Muscle Activation Onset during Expected and Unexpected Sudden Upper Limb Loading in Subjects with Low Back Pain and Healthy Subjects (예측된 그리고 예측되진 않은 갑작스런 상지로의 부하 적용시 요통 환자와 정상인의 압력 중심 이동 및 근활성 개시에 미치는 영향)

  • Chae, Yun-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.4
    • /
    • pp.51-60
    • /
    • 2006
  • Purpose: This study was to compare the effect of center of pressure(COP) displacement and muscle activation onset during expected and unexpected sudden limb loading in subjects with low back pain and healthy control subjects. Most studies of COP displacement and muscle activation onset on postural task focused on sudden trunk loading or gross limb movements. Investigation of the COP displacement and muscle activation onset during expected and unexpected sudden upper limb loading deserves similar attention. Methods: For this study, 14 subjects with low back pain and 12 healthy control subjects are participated. Force plate and surface EMG measures were used to determine COP displacement and muscle activation onset under expected and unexpected sudden upper limb loading. Results: COP displacement and muscle activation onset under unexpected sudden upper limb loading were similar in subjects with low back pain and healthy control subjects. However, COP displacement and muscle activation onset under expected sudden upper limb loading were shortened in healthy control subject but not among the subjects with low back pain. Conclusion: The results provide evidence for impaired feed-forward control in subjects with low back pain.

  • PDF

Research on the Inter-harmonics Equivalent Impedance of Series Hybrid Active Power Filter

  • Jian-gong, Zhang;Jian-ben, Liu;Shao-jun, Dai;Qiao-fu, Chen;Jun-jia, He
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2062-2069
    • /
    • 2015
  • In the series hybrid active power filter (SHAPF) with magnetic flux compensation (MFC), the system current oscillate in the experimental results when adding the same phase harmonic current command in current control block. This condition endangers the security of the SHAPF. Taking the digit period average arithmetic as example, this paper explains the inter-harmonics current oscillation in the experiment. The conclusion is that the SHAPF is unstable to the inter-harmonics current in theory. Limited by the capacity of the inverter, the system current and the inverter output current do not increase to infinite. At last, some methods are proposed to solve this problem. From the practical viewpoint, the voltage feed-forward control is easy to achieve. It can suppress the current oscillation problems, and also improve the filtering effect. The feasibility of the methods is validated by both the emulation and experiment results.