• Title/Summary/Keyword: fecal metabolomics

Search Result 5, Processing Time 0.017 seconds

The Association between Gut Microbiota and Its Metabolites in Gestational Diabetes Mellitus

  • Hua Lin;Changxi Liao;Rujing Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.10
    • /
    • pp.1995-2004
    • /
    • 2024
  • Gut microbial metabolites have been demonstrated to play a role in diabetes mellitus and gestational diabetes mellitus (GDM). This study aimed to investigate gut microbiome, fecal metabolomics, and their association in pregnant women with and without GDM. The metabolome indicated that the top 2 differential metabolic pathways between control (Con) and GDM groups were phenylalanine metabolism and nucleotide metabolism. The increased Phenylalanylglycine, m-coumaric acid, and Phenylacetic acid were among the top differential metabolites between Con and GDM groups and involved in phenylalanine metabolism. Uracil and hypoxanthine were top differential metabolites in Con vs. GDM and involved in nucleotide metabolism. The proficiently altered gut microbiota at the class level was c_unclassified_ Firmicutes. Association analysis between gut microbiota and fecal metabolites indicated that the increased gut symbiont Clostridium belonged to Firmicutes and was linked to the dysregulation of phenylalanine metabolism in GDM. This study may provide the mechanism underlying how Clostridium-phenylalanine metabolism association contributes to GDM pathogenesis and also be a novel therapeutic strategy to treat GDM.

Efficacy Assessment of the Co-Administration of Vancomycin and Metronidazole in Clostridioides difficile-Infected Mice Based on Changes in Intestinal Ecology

  • Saiwei Zhong;Jingpeng Yang;He Huang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.828-837
    • /
    • 2024
  • Vancomycin (VAN) and metronidazole (MTR) remain the current drugs of choice for the treatment of non-severe Clostridioides difficile infection (CDI); however, while their co-administration has appeared in clinical treatment, the efficacy varies greatly and the mechanism is unknown. In this study, a CDI mouse model was constructed to evaluate the therapeutic effects of VAN and MTR alone or in combination. For a perspective on the intestinal ecology, 16S rRNA amplicon sequencing and non-targeted metabolomics techniques were used to investigate changes in the fecal microbiota and metabolome of mice under the co-administration treatment. As a result, the survival rate of mice under co-administration was not dramatically different compared to that of single antibiotics, and the former caused intestinal tissue hyperplasia and edema. Co-administration also significantly enhanced the activity of amino acid metabolic pathways represented by phenylalanine, arginine, proline, and histidine, decreased the level of deoxycholic acid (DCA), and downregulated the abundance of beneficial microbes, such as Bifidobacterium and Akkermansia. VAN plays a dominant role in microbiota regulation in co-administration. In addition, co-administration reduced or increased the relative abundance of antibiotic-sensitive bacteria, including beneficial and harmful microbes, without a difference. Taken together, there are some risks associated with the co-administration of VAN and MTR, and this combination mode should be used with caution in CDI treatment.

Profiling of endogenous metabolites and changes in intestinal microbiota distribution after GEN-001 (Lactococcus lactis) administration

  • Min-Gul Kim;Suin Kim;Ji-Young Jeon;Seol Ju Moon;Yong-Geun Kwak;Joo Young Na;SeungHwan Lee;Kyung-Mi Park;Hyo-Jin Kim;Sang-Min Lee;Seo-Yeon Choi;Kwang-Hee Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.153-164
    • /
    • 2024
  • This study aimed to identify metabolic biomarkers and investigate changes in intestinal microbiota in the feces of healthy participants following administration of Lactococcus lactis GEN-001. GEN-001 is a single-strain L. lactis strain isolated from the gut of a healthy human volunteer. The study was conducted as a parallel, randomized, phase 1, open design trial. Twenty healthy Korean males were divided into five groups according to the GEN-001 dosage and dietary control. Groups A, B, C, and D1 received 1, 3, 6, and 9 GEN-001 capsules (1 × 1011 colony forming units), respectively, without dietary adjustment, whereas group D2 received 9 GEN-001 capsules with dietary adjustment. All groups received a single dose. Fecal samples were collected 2 days before GEN-001 administration to 7 days after for untargeted metabolomics and gut microbial metagenomic analyses; blood samples were collected simultaneously for immunogenicity analysis. Levels of phenylalanine, tyrosine, cholic acid, deoxycholic acid, and tryptophan were significantly increased at 5-6 days after GEN-001 administration when compared with predose levels. Compared with predose, the relative abundance (%) of Parabacteroides and Alistipes significantly decreased, whereas that of Lactobacillus and Lactococcus increased; Lactobacillus and tryptophan levels were negatively correlated. A single administration of GEN-001 shifted the gut microbiota in healthy volunteers to a more balanced state as evidenced by an increased abundance of beneficial bacteria, including Lactobacillus, and higher levels of the metabolites that have immunogenic properties.

The Gut Microbial Lipid Metabolite 14(15)-EpETE Inhibits Substance P Release by Targeting GCG/PKA Signaling to Relieve Cisplatin-Induced Nausea and Vomiting in Rats

  • Man Lu;Liwei Xie;Sijie Yin;Jing Zhou;Lingmei Yi;Ling Ye
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1769-1777
    • /
    • 2024
  • Chemotherapy-induced nausea and vomiting (CINV) is a debilitating side effect related to activation of substance P (SP). SP activation can result from dysregulation of the gut-brain axis, and also from activation of protein kinase A signaling (PKA) signaling. In this study, we connected these factors in an attempt to unveil the mechanisms underlying CINV and develop new therapeutic strategies. Female rats were injected with cisplatin (Cis) to induce pica. Fecal samples were collected before/after injection, and subjected to lipid metabolomics analysis. In another portion of pica rats, the PKA inhibitor KT5720 was applied to investigate the involvement of PKA signaling in CINV, while fecal microbiota transplantation (FMT) was implemented to verify the therapeutic effect of the lipid metabolite 14(15)-EpETE. Pica symptoms were recorded, followed by ileal histological examination. The targeting relationship between 14(15)-EpETE and glucagon was determined by bioinformatics. SP and glucagon/PKA signaling in rat ileum, serum, and/or brain substantia nigra were detected by immunohistochemistry, enzyme-linked immunosorbent assay, and/or western blot. The results showed a significantly lower level of 14(15)-EpETE in rat feces after Cis injection. KT5720 treatment alleviated Cis-induced pica symptoms, ileal injury, SP content increase in the ileum, serum, and brain substantia nigra, and ileal PKA activation in rats. The ileal level of glucagon was elevated by Cis in rats. FMT exerted an effect similar to that of KT5720 treatment, relieving the Cis-induced changes, including ileal glucagon/PKA activation in rats. Our findings demonstrate that FMT restores 14(15)-EpETE production, which inhibits SP release by targeting GCG/PKA signaling, ultimately mitigating CINV.

The Metabolic Functional Feature of Gut Microbiota in Mongolian Patients with Type 2 Diabetes

  • Yanchao Liu;Hui Pang;Na Li;Yang Jiao;Zexu Zhang;Qin Zhu
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1214-1221
    • /
    • 2024
  • The accumulating evidence substantiates the indispensable role of gut microbiota in modulating the pathogenesis of type 2 diabetes. Uncovering the intricacies of the mechanism is imperative in aiding disease control efforts. Revealing key bacterial species, their metabolites and/or metabolic pathways from the vast array of gut microorganisms can significantly contribute to precise treatment of the disease. With a high prevalence of type 2 diabetes in Inner Mongolia, China, we recruited volunteers from among the Mongolian population to investigate the relationship between gut microbiota and the disease. Fecal samples were collected from the Volunteers of Mongolia with Type 2 Diabetes group and a Control group, and detected by metagenomic analysis and untargeted metabolomics analysis. The findings suggest that Firmicutes and Bacteroidetes phyla are the predominant gut microorganisms that exert significant influence on the pathogenesis of type 2 diabetes in the Mongolian population. In the disease group, despite an increase in the quantity of most gut microbial metabolic enzymes, there was a concomitant weakening of gut metabolic function, suggesting that the gut microbiota may be in a compensatory state during the disease stage. β-Tocotrienol may serve as a pivotal gut metabolite produced by gut microorganisms and a potential biomarker for type 2 diabetes. The metabolic biosynthesis pathways of ubiquinone and other terpenoid quinones could be the crucial mechanism through which the gut microbiota regulates type 2 diabetes. Additionally, certain Clostridium gut species may play a pivotal role in the progression of the disease.