• 제목/요약/키워드: feature vector classification

검색결과 537건 처리시간 0.021초

SVM을 이용한 교전영역 내 위협목록 획득방법 (The Threat List Acquisition Method in an Engagement Area using the Support Vector Machines)

  • 고혜승
    • 한국군사과학기술학회지
    • /
    • 제19권2호
    • /
    • pp.236-243
    • /
    • 2016
  • This paper presents a threat list acquisition method in an engagement area using the support vector machines (SVM). The proposed method consists of track creation, track estimation, track feature extraction, and threat list classification. To classify the threat track robustly, dynamic track estimation and pattern recognition algorithms are used. Dynamic tracks are estimated accurately by approximating a track movement using position, velocity and time. After track estimation, track features are extracted from the track information, and used to classify threat list. Experimental results showed that the threat list acquisition method in the engagement area achieved about 95 % accuracy rate for whole test tracks when using the SVM classifier. In case of improving the real-time process through further studies, it can be expected to apply the fire control systems.

회색도 변환 행렬 특징과 SVM을 이용한 흑색종 분류 알고리즘 (Melanoma Classification Algorithm using Gray-level Conversion Matrix Feature and Support Vector Machine)

  • 구정모;나승대;조진호;김명남
    • 한국멀티미디어학회논문지
    • /
    • 제21권2호
    • /
    • pp.130-137
    • /
    • 2018
  • Recently, human life is getting longer due to change of living environment and development of medical technology, and silver medical technology has been in the limelight. Geriatric skin disease is difficult to detect early, and when it is missed, it becomes a malignant disease and is difficult to treatment. Melanoma is one of the most common diseases of geriatric skin disease and initially has a similar modality with the nevus. In order to overcome this problem, we attempted to perform a feature analysis in order to attempt automatic detection of melanoma-like lesions. In this paper, one is first order analysis using information of pixels in radiomic feature. The other is a gray-level co-occurrence matrix and a gray level run length matrix, which are feature extraction methods for converting image information into a matrix. The features were extracted through these analyses. And classification is implemented by SVM.

SMV코덱의 음성/음악 분류 성능 향상을 위한 Support Vector Machine의 적용 (Analysis and Implementation of Speech/Music Classification for 3GPP2 SMV Codec Based on Support Vector Machine)

  • 김상균;장준혁
    • 대한전자공학회논문지SP
    • /
    • 제45권6호
    • /
    • pp.142-147
    • /
    • 2008
  • 본 논문에서는 support vector machine (SVM)을 이용하여 기존의 3GPP2 selectable mode vocoder (SMV)코덱의 음성/음악 분류 성능을 향상시키는 방법을 제시한다. SVM은 통계적 학습 이론으로 훈련 데이터 사이의 최적 분류 초평면을 찾아내 최적화된 이진 분류를 보여준다. SMV의 음성/음악 실시간 분류 알고리즘에서 사용된 특징벡터와 분류방법을 분석하고, 이를 기반으로 분류성능향상을 위해 통계적 학습 이론인 SVM을 도입한다. 구체적으로, SMV의 음성/음악 분류알고리즘에서 사용되어진 특징벡터만을 선택적으로 사용하여 효과적으로 SVM을 구성한 분류기법을 제시한다. SMV의 음성/음악 분류에 적용한 SVM의 성능 평가를 위해 SMV 원래의 분류알고리즘과 비교하였으며, 다양한 음악장르에 대해 시스템의 성능을 평가한 결과 SVM을 이용하였을 때 기존의 SMV의 방법보다 우수한 음성/음악 분류 성능을 보였다.

Stress Level Based Emotion Classification Using Hybrid Deep Learning Algorithm

  • Sivasankaran Pichandi;Gomathy Balasubramanian;Venkatesh Chakrapani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.3099-3120
    • /
    • 2023
  • The present fast-moving era brings a serious stress issue that affects elders and youngsters. Everyone has undergone stress factors at least once in their lifetime. Stress is more among youngsters as they are new to the working environment. whereas the stress factors for elders affect the individual and overall performance in an organization. Electroencephalogram (EEG) based stress level classification is one of the widely used methodologies for stress detection. However, the signal processing methods evolved so far have limitations as most of the stress classification models compute the stress level in a predefined environment to detect individual stress factors. Specifically, machine learning based stress classification models requires additional algorithm for feature extraction which increases the computation cost. Also due to the limited feature learning characteristics of machine learning algorithms, the classification performance reduces and inaccurate sometimes. It is evident from numerous research works that deep learning models outperforms machine learning techniques. Thus, to classify all the emotions based on stress level in this research work a hybrid deep learning algorithm is presented. Compared to conventional deep learning models, hybrid models outperforms in feature handing. Better feature extraction and selection can be made through deep learning models. Adding machine learning classifiers in deep learning architecture will enhance the classification performances. Thus, a hybrid convolutional neural network model was presented which extracts the features using CNN and classifies them through machine learning support vector machine. Simulation analysis of benchmark datasets demonstrates the proposed model performances. Finally, existing methods are comparatively analyzed to demonstrate the better performance of the proposed model as a result of the proposed hybrid combination.

퍼지의사결정을 이용한 RC구조물의 건전성평가 (Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making)

  • 박철수;손용우;이증빈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.274-283
    • /
    • 2002
  • This paper presents an efficient models for reinforeced concrete structures using CART-ANFIS(classification and regression tree-adaptive neuro fuzzy inference system). a fuzzy decision tree parttitions the input space of a data set into mutually exclusive regions, each of which is assigned a label, a value, or an action to characterize its data points. Fuzzy decision trees used for classification problems are often called fuzzy classification trees, and each terminal node contains a label that indicates the predicted class of a given feature vector. In the same vein, decision trees used for regression problems are often called fuzzy regression trees, and the terminal node labels may be constants or equations that specify the Predicted output value of a given input vector. Note that CART can select relevant inputs and do tree partitioning of the input space, while ANFIS refines the regression and makes it everywhere continuous and smooth. Thus it can be seen that CART and ANFIS are complementary and their combination constitutes a solid approach to fuzzy modeling.

  • PDF

Musical Genre Classification Based on Deep Residual Auto-Encoder and Support Vector Machine

  • Xue Han;Wenzhuo Chen;Changjian Zhou
    • Journal of Information Processing Systems
    • /
    • 제20권1호
    • /
    • pp.13-23
    • /
    • 2024
  • Music brings pleasure and relaxation to people. Therefore, it is necessary to classify musical genres based on scenes. Identifying favorite musical genres from massive music data is a time-consuming and laborious task. Recent studies have suggested that machine learning algorithms are effective in distinguishing between various musical genres. However, meeting the actual requirements in terms of accuracy or timeliness is challenging. In this study, a hybrid machine learning model that combines a deep residual auto-encoder (DRAE) and support vector machine (SVM) for musical genre recognition was proposed. Eight manually extracted features from the Mel-frequency cepstral coefficients (MFCC) were employed in the preprocessing stage as the hybrid music data source. During the training stage, DRAE was employed to extract feature maps, which were then used as input for the SVM classifier. The experimental results indicated that this method achieved a 91.54% F1-score and 91.58% top-1 accuracy, outperforming existing approaches. This novel approach leverages deep architecture and conventional machine learning algorithms and provides a new horizon for musical genre classification tasks.

Fuzzy Mean Method with Bispectral Features for Robust 2D Shape Classification

  • Woo, Young-Woon;Han, Soo-Whan
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 추계학술대회-지능형 정보기술과 미래조직 Information Technology and Future Organization
    • /
    • pp.313-320
    • /
    • 1999
  • In this paper, a translation, rotation and scale invariant system for the classification of closed 2D images using the bispectrum of a contour sequence and the weighted fuzzy mean method is derived and compared with the classification process using one of the competitive neural algorithm, called a LVQ(Learning Vector Quantization). The bispectrun based on third order cumulants is applied to the contour sequences of the images to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images and are fed into an classifier using weighted fuzzy mean method. The experimental processes with eight different shapes of aircraft images are presented to illustrate the high performance of the proposed classifier.

  • PDF

One Channel Five-Way Classification Algorithm For Automatically Classifying Speech

  • Lee, Kyo-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • 제17권3E호
    • /
    • pp.12-21
    • /
    • 1998
  • In this paper, we describe the one channel five-way, V/U/M/N/S (Voice/Unvoice/Nasal/Silent), classification algorithm for automatically classifying speech. The decision making process is viewed as a pattern viewed as a pattern recognition problem. Two aspects of the algorithm are developed: feature selection and classifier type. The feature selection procedure is studied for identifying a set of features to make V/U/M/N/S classification. The classifiers used are a vector quantization (VQ), a neural network(NN), and a decision tree method. Actual five sentences spoken by six speakers, three male and three female, are tested with proposed classifiers. From a set of measurement tests, the proposed classifiers show fairly good accuracy for V/U/M/N/S decision.

  • PDF

퍼지분류기를 이용한 인간의 행동분류 (Behavior-classification of Human Using Fuzzy-classifier)

  • 김진규;주영훈
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2314-2318
    • /
    • 2010
  • For human-robot interaction, a robot should recognize the meaning of human behavior. In the case of static behavior such as face expression and sign language, the information contained in a single image is sufficient to deliver the meaning to the robot. In the case of dynamic behavior such as gestures, however, the information of sequential images is required. This paper proposes behavior classification by using fuzzy classifier to deliver the meaning of dynamic behavior to the robot. The proposed method extracts feature points from input images by a skeleton model, generates a vector space from a differential image of the extracted feature points, and uses this information as the learning data for fuzzy classifier. Finally, we show the effectiveness and the feasibility of the proposed method through experiments.

우도비 특징 벡터를 이용한 SVM 기반의 음성 검출기 (Voice Activity Detection Based on SVM Classifier Using Likelihood Ratio Feature Vector)

  • 조규행;강상기;장준혁
    • 한국음향학회지
    • /
    • 제26권8호
    • /
    • pp.397-402
    • /
    • 2007
  • 본 논문에서는 기존의 통계적 모델 기반의 음성 검출기의 성능 향상을 위해 이진 분류에 우수한 support vector machine(SVM)을 도입한다. 기존의 통계적 모델 기반 음성 검출기의 경우 음성의 존재와 부재에 대한 가설로부터 각각의 통계적 모델을 세워 입력 데이타에 의해 결정된 각 주파수 채널별 우도비(likelihood ratio)를 단순히 기하 평균을 취하여 문턱값과 비교, 음성 검출 여부를 판단한다. 제안된 음성 검출기는 기존의 기하 평균을 이용한 결정식을 대신하여 분류 오류 확률이 최소화되도록 각 주파수 채널별 우도비를 SVM의 특징 벡터로 적용한다. 제안된 SVM 기반의 통계적 모델 음성 검출기는 기존의 LRT를 이용한 음성 검출기 및 SVM 기반의 음성 검출기들과 비교하여 다양한 잡음 환경에서 우수한 성능을 나타낸다.