• 제목/요약/키워드: feature vector classification

검색결과 537건 처리시간 0.02초

웨이블렛변환과 서포트벡터머신을 이용한 저대비·불균일·무특징 표면 결함 분류에 관한 연구 (A Study on the Defect Classification of Low-contrast·Uneven·Featureless Surface Using Wavelet Transform and Support Vector Machine)

  • 김성주;김경범
    • 반도체디스플레이기술학회지
    • /
    • 제19권3호
    • /
    • pp.1-6
    • /
    • 2020
  • In this paper, a method for improving the defect classification performance in steel plate surface has been studied, based on DWT(discrete wavelet transform) and SVM(support vector machine). Surface images of the steel plate have low contrast, uneven, and featureless, so that the contrast between defect and defect-free regions is not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. In order to improve the characteristics of these images, a synthetic images based on discrete wavelet transform are modeled. Using the synthetic images, edge-based features are extracted and also geometrical features are computed. SVM was configured in order to classify defect images using extracted features. As results of the experiment, the support vector machine based classifier showed good classification performance of 94.3%. The proposed classifier is expected to contribute to the key element of inspection process in smart factory.

심음 기반의 심장질환 분류를 위한 새로운 시간영역 특징 (New Temporal Features for Cardiac Disorder Classification by Heart Sound)

  • 곽철;권오욱
    • 한국음향학회지
    • /
    • 제29권2호
    • /
    • pp.133-140
    • /
    • 2010
  • 연속 심음신호로부터 추출한 새로운 시간영역에서의 특징들을 추가하여 심장질환 분류의 성능을 개선한다. 기존에 사용되고 있는 켑스트럼 영역 특징인 멜주파수 켑스트럼 계수 (MFCC)에 심음 포락선, 심잡음 확률벡터, 심잡음 진폭값 변동으로 구성된 새로운 3종류의 시간영역 특징을 추가한다. 심장 질환 분류 및 검출 실험에서, 시간영역 특징의 분류 정확도에 대한 기여도를 평가하고 순차적 특징선택 방식을 이용하여 시간영역 특징을 선택한다. 선택된 특징들은 다층 퍼셉트론(MLP), support rector machine (SVM), extreme learning machine (ELM)와 같은 신경회로망 패턴 분류기에 대하여 의미있고 일관되게 분류 정확도를 개선함을 보여준다.

고해상도 영상의 분류결과 개선을 위한 최적의 Shape-Size Index 추출에 관한 연구 (A Study on Optimal Shape-Size Index Extraction for Classification of High Resolution Satellite Imagery)

  • 한유경;김혜진;최재완;김용일
    • 대한원격탐사학회지
    • /
    • 제25권2호
    • /
    • pp.145-154
    • /
    • 2009
  • 고해상도 위성영상이 갖는 공간 객체의 복잡성과 다양성에 의해 기존 중 저해상도 영상에서 사용하던 분류 방식을 고해상도 영상에 그대로 적용하기에는 한계가 있다. 이러한 문제를 극복하기 위하여 영상의 공간적인 특성을 추가적으로 추출하여 분광정보와 결합하여 분류를 수행하는 방식의 연구가 진행되고 있다. 본 연구의 목적은 고해상도 영상의 분류정확도를 개선하기 위하여 새로운 공간 개체(spatial feature)인 SSI(Shape-Size Index)를 제안하는데 있다. SSI feature는 영역 확장(Region Growing) 기반의 영상 분할(Image Segmentation)을 수행한 후, 세그먼트 내에 공간 속성값을 할당하여 공간정보를 추출한다. 추출된 공간정보를 고해상도 영상의 다중분광 밴드와 결합하여 Support Vector Machine(SVM)을 이용한 분류를 수행하였다. SSI를 구성하는데 필요한 두 매개변수인 분할변수와 가중치변수의 최적값을 얻기 위해서 고해상도 위성영상인 KOMFSAT-2와 QuickBird-2에 반복적으로 적용하였다. 결과적으로 고해상도 영상의 공간특성을 표현하는데 적합한 매개변수를 통하여 도출된 SSI와 고해상도 분광 밴드를 결합하여 분류를 수행한 결과가 분광밴드만을 이용하여 분류를 수행한 결과에 비해 높은 분류정확도를 도출함을 확인하였다.

문장 감정 강도를 반영한 개선된 자질 가중치 기법 기반의 문서 감정 분류 시스템 (A Document Sentiment Classification System Based on the Feature Weighting Method Improved by Measuring Sentence Sentiment Intensity)

  • 황재원;고영중
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권6호
    • /
    • pp.491-497
    • /
    • 2009
  • 본 논문은 한국어 문서감정 분류에서 각 문장의 감정 정도의 차이를 고려하여 자질의 가중치를 계산하는 방법을 제안한다. 감정자질은 어휘 자원으로서 감정을 가지는 단어들의 집합이며, 학습데이터를 이용하여 이 감정자질의 카이제곱 통계량 값(${\chi}^2$ statistic)을 얻을 수 있다. 이렇게 얻어진 카이제곱 통계량 값으로 문서에서 출현한 각 문장의 감정강도를 수치화 할 수 있다. 각 문장의 감정강도는 문서에서 가장 강한 감정을 가진 문장에 근한 비율로 계산되며, 이 값을 TF-IDF 가중치 기법에 적용하여 최종적인 자질의 가중치를 결정하게 된다. 그리고 일반적으로 문서 분류에서 뛰어난 성능을 보여주는 지지벡터기계(Support Vector Machine)를 사용하여 기계학습을 수행한 후 성능을 평가한다. 성능평가에서 제안된 기법은 문장감정의 강도를 고려하지 않은 내용어(Content Word) 기반의 자질을 사용한 경우보다 약 2.0%의 성능향상을 얻었다.

SVM을 위한 교사 랭크 정규화 (Supervised Rank Normalization for Support Vector Machines)

  • 이수종;허경용
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권11호
    • /
    • pp.31-38
    • /
    • 2013
  • 특징 정규화는 인식기를 적용하기 이전의 전처리 단계로 특징의 스케일에 따른 오류를 줄이기 위해 널리 사용되고 있다. 하지만 기존 정규화 방법은 특징의 분포를 가정하는 경우가 많으며, 클래스 라벨을 고려하지 않으므로 정규화 결과가 인식률에서 최적임을 보장하지 못하는 문제점이 있다. 이 논문에서는 특징의 분포를 가정하지 않는 랭크 정규화 방법과 클래스 라벨을 사용하는 교사 학습법을 결합한 교사 랭크 정규화 방법을 제안하였다. 제안하는 방법은 데이터의 분포를 바탕으로 특징의 분포를 자동으로 추정하므로 특징의 분포를 가정하지 않으며, 데이터 포인트의 최근접 이웃이 가지는 클래스 라벨을 바탕으로 정규화를 시행하므로 오류의 발생을 최소화할 수 있다. 특히 SVM의 경우 서로 다른 클래스에 속하는 데이터 포인트들이 혼재되어 나타나는 영역에 경계선을 설정하므로 이 영역의 밀도를 줄임으로써 경계선 설정을 보다 용이하게 하고 결과적으로 일반화 오류를 감소시킬 수 있다. 이러한 사실들은 실험 결과를 통해 확인할 수 있다.

음악 장르 분류를 위한 새로운 자동 Taxonomy 구축 알고리즘 (New Automatic Taxonomy Generation Algorithm for the Audio Genre Classification)

  • 최택성;문선국;박영철;윤대희;이석필
    • 한국음향학회지
    • /
    • 제27권3호
    • /
    • pp.111-118
    • /
    • 2008
  • 본 논문에서는 음악 장르 분류를 위한 새로운 자동 Taxonomy 구축 알고리즘을 제안한다. 제안된 알고리즘은 모든 가능한 노드들의 분류 확률을 예측하여 예측된 분류 성능값이 가장 좋은 조합을 Taxonomy로 구축하는 것이다. 제안된 알고리즘에서의 분류 확률 예측은 훈련 데이터를 k-fold cross validation을 이용하여 분류기에 적용함으로써 이루어진다. 제안된 알고리즘을 기반으로 한 분류 성능 측정은 2 클래스로 이루어진 각각의 노드에 2개 범주 분류에 효과적인 support vector machine을 적용함으로써 이루어진다. 제안된 알고리즘의 성능 검증을 위해 음색, 리듬, 피치 등 오디오 신호의 특징을 나타내는 다양한 파라미터를 오디오 신호로부터 추출하여 제안된 알고리즘과 기존의 다중 범주 분류기들을 이용하여 분류성능을 평가하였다. 다양한 실험결과 제안된 알고리즘은 기존의 알고리즘에 비하여 5%에서 25%정도의 분류 성능이 향상된 것을 확인할 수 있었고 특히 낮은 차원의 특징벡터를 이용한 분류 실험에서는 10% 에서 25% 향상된 좋은 성능을 보였다.

Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류 (Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine)

  • 조익성;권혁숭;김주만;김선종
    • 한국정보통신학회논문지
    • /
    • 제23권2호
    • /
    • pp.117-126
    • /
    • 2019
  • 부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경망, 퍼지, 시계열 주파수 분석, 비선형 분석법 등이 연구되어 왔다. 이러한 방법들은 분류율를 향상시키기 위해 정확한 특징점과 많은 양의 신호를 처리해야 하기 때문에 데이터의 가공 및 연산이 복잡하며, 다양한 부정맥을 분류하는데 어려움이 있다. 본 연구에서는 AR(Auto Regressive) 모델링 기반의 특징점 추출과 SVM(Support Vector Machine)을 통한 조기수축 부정맥 분류 방법을 제안한다. 이를 위해 잡음을 제거한 ECG 신호에서 R파를 검출하고 QRS와 RR 간격의 특정 파형 구간을 모델링하였다. 이후 최적 세그먼트 길이(n1, n2), 최적 차수( p1, p2)의 4가지 AR 모델링 변수를 추출하고 SVM을 통해 Normal, PVC, PAC를 분류하였다. 연구의 타당성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스를 대상으로 한 R파의 평균 검출 성능은 99.77%, Normal, PVC, PAC 부정맥은 각각 99.23%, 97.28, 96.62의 평균 분류율을 나타내었다.

기술용어 분산표현을 활용한 특허문헌 분류에 관한 연구 (A Study on Patent Literature Classification Using Distributed Representation of Technical Terms)

  • 최윤수;최성필
    • 한국문헌정보학회지
    • /
    • 제53권2호
    • /
    • pp.179-199
    • /
    • 2019
  • 본 연구의 목적은 특허 문헌 분류에 가장 적합한 방법론을 발견하기 위하여 다양한 자질 추출 방법과 기계학습 및 딥러닝 모델을 살펴보고 실험을 통해 최적의 성능을 제공하는 방법론을 분석하는데 있다. 자질 추출 방법으로는 전통적인 BoW 방법과 분산표현 방식인 워드 임베딩 벡터를 비교 실험하고, 문헌 집합 구축 방식으로는 형태소 분석과 멀티그램을 이용하는 방식을 비교 검토하였다. 또한 전통적인 기계학습 모델과 딥러닝 모델을 이용하여 분류 성능을 검증하였다. 실험 결과, 분산표현 방법과 형태소 분석을 이용한 자질추출 방법을 기반으로 딥러닝 모델을 적용하였을 경우에 분류 성능이 가장 우수한 것으로 판명되었으며 섹션, 클래스, 서브클래스 분류 실험에서 전통적인 기계학습 방법에 비해 각각 5.71%, 18.84%, 21.53% 우수한 분류 성능을 보여주었다.

깊은 신경망 기반 대용량 텍스트 데이터 분류 기술 (Large-Scale Text Classification with Deep Neural Networks)

  • 조휘열;김진화;김경민;장정호;엄재홍;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권5호
    • /
    • pp.322-327
    • /
    • 2017
  • 문서 분류 문제는 오랜 기간 동안 자연어 처리 분야에서 연구되어 왔다. 우리는 기존 컨볼루션 신경망을 이용했던 연구에서 나아가, 순환 신경망에 기반을 둔 문서 분류를 수행하였고 그 결과를 종합하여 제시하려 한다. 컨볼루션 신경망은 단층 컨볼루션 신경망을 사용했으며, 순환 신경망은 가장 성능이 좋다고 알려져 있는 장기-단기 기억 신경망과 회로형 순환 유닛을 활용하였다. 실험 결과, 분류 정확도는 Multinomial Naïve Bayesian Classifier < SVM < LSTM < CNN < GRU의 순서로 나타났다. 따라서 텍스트 문서 분류 문제는 시퀀스를 고려하는 것 보다는 문서의 feature를 추출하여 분류하는 문제에 가깝다는 것을 확인할 수 있었다. 그리고 GRU가 LSTM보다 문서의 feature 추출에 더 적합하다는 것을 알 수 있었으며 적절한 feature와 시퀀스 정보를 함께 활용할 때 가장 성능이 잘 나온다는 것을 확인할 수 있었다.

Multiclass Support Vector Machines with SCAD

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • 제19권5호
    • /
    • pp.655-662
    • /
    • 2012
  • Classification is an important research field in pattern recognition with high-dimensional predictors. The support vector machine(SVM) is a penalized feature selector and classifier. It is based on the hinge loss function, the non-convex penalty function, and the smoothly clipped absolute deviation(SCAD) suggested by Fan and Li (2001). We developed the algorithm for the multiclass SVM with the SCAD penalty function using the local quadratic approximation. For multiclass problems we compared the performance of the SVM with the $L_1$, $L_2$ penalty functions and the developed method.