Recently the VR technique has evolved into a mixed reality (MR) technique, in which a user can observe a real world in front of him/her as well as virtual objects displayed. This has been realized by the employment of a see-through type HMD (S-HMD). We have been developing a mixed reality space employing the MR technique. The objective of our study is to realize a virtual human that acts as a man-machine interface in the real space. It is important in the study to create a virtual human acting naturally in front of a user. In order to give natural motions to the virtual human, we employ a developed motion capture technique. We have already created various 3-D human motion models by the motion capture technique. In this paper, we present a technique for creating a virtual human using a human model provided by a computer graphics software, 3D Studio Max(C). The main difficulty of this issue is that 3D Studio Max(C) claims 28 feature points for describing a human motion, but the used motion capture system assumes less number of feature points. Therefore a technique is proposed in the paper for producing motion data of 28 feature points from the motion data of less number of feature points or from incomplete motion data. Performance of the proposed technique was examined by observing visually the demonstration of some motions of a created virtual human and overall natural motions were realized.
This study is about the visual appreciation by sex with the analysis of time range of observing data which was got through observation experiment with the space of lobby in hospitals. The observation data of the subjects who observed the space include the frequency and time, through which the process of visual appreciation could be evaluated with the definition of the frequency and the time of observation. First, the fact that men had higher frequency of observation than women means the former had more movement than the latter, and another fact of their fewer times can be understood as the time of their staying was shorter. That is, even though the men had more movements of sight, they showed the feature of staying shorter. Second, the rate high and low of observation frequency and times made it possible for observation characteristics to be defined as 'intensive search' 'active search' 'fixed concentration' and 'search wandering.' The definition of understanding this process of visual appreciation can be available for a frame of effective analysis of observation characteristics according to the passage of time. Third, the intense search is the case of 'high frequency' having the feature of high visual appreciation owing to the active visual actions for acquiring information. Men were found to have more intense search which decreased gradually as time passed, while women showed the feature of many times of intense search. Fourth, it was found that with many observation data in a certain range of time the subjects had fixed concentration, where women were found to have repetitive fixed concentration along with the change of observation time while men were seen to have more observation tendency for fixed concentration. Fifth, at the cross tabulation of frequency and times, men had the feature of dispersed visual appreciation while women had more distinction between fixation and movement, which revealed that there is surely the difference between men and women in the process of visual appreciation.
본 논문은 3차원 공간상에 존재하는 타원형 물체의 위치 및 자세 추정 기법을 다룬다. 영상에 투영된 타원특징을 해석하여 원래의 타원에 대한 3차원 자세정보를 구하는 것은 어려운 문제이다. 본 논문은 타원특징의 3차원 정보를 추출하기 위하여, 두개의 공면점을 도입한 위치 및 자세 추정 알고리즘을 제안한다. 제안된 방법은 모델과 영상좌표계에서 각각 정의되는 타원-공면점에 대한 대응쌍이 주어질 때 두 좌표계에 대한 동차변환행렬의 유일해를 결정한다. 타원-공면점은 폴라리티를 기반으로 원근변환에 불변하는 한 쌍의 삼각특징으로 변환되며, 삼각특징들로부터 평면 호모그래피가 추정된다. 카메라 좌표계에 대한 물체 좌표계의 3차원 위치 및 자세 파라미터들은 호모그래피 분해를 통해 계산된다. 제안된 방법은 3차원 자세 및 위치 추정 오차의 분석과 공면점의 위치에 따른 민감도의 분석을 통해 평가된다.
얼굴 구성 요소 각각에 대한 파라미터로부터 특정한 포즈나 표정을 갖는 얼굴 이미지를 합성하는 방법을 제안한다 이러한 파라미터화는 얼굴 이미지의 표현과 저장, 전송을 효과적으로 수행할 수 있도록 한다. 그러나 얼굴 이미지의 변화는 고차원의 이미지 공간에서 복잡한 비선형 매니폴드를 구성하기 때문에 파라미터화 하는 것이 쉽지 않다. 이러한 문제점을 해결하기 위해, 얼굴 이미지에 대한 표현방법으로 LLE (Locally Linear Embedding) 알고리즘을 사용한다. LLE 알고리즘은 얼굴 이미지들 사이의 관계를 유지하면서 저차원의 특징 공간으로 투사된 매니폴드를 더욱 부드럽고 연속적으로 만들어준다. 그 다음, 특징공간에서 특정한 포즈나 표정 파라미터에 해당하는 포인트를 추정하기 위해 snake 모델을 적용한다. 마지막으로, 추정된 특징 값의 주변에 있는 여러 장의 얼굴 이미지들의 가중치 평균을 구해 합성된 결과이미지를 만든다 실험결과를 통해 제안된 방법을 이용하면 겹침 현상이 적고 포즈나 표정에 대한 파라미터의 변화와 일치하는 이미지를 합성한다는 것을 보인다.
MPEG-4 표준에서는 객체 단위의 부호화를 수행하기 위해 자연영상으로부터 비디오 객체를 분리하는 영상분할(segmentation) 기술이 필요하다. 영상분할 방법은 크게 자동 영상분할(automatic segmentation)과 반자동 영상분할(semi-automatic segmentation)의 두 부류로 나눌 수 있다. 지금까지 개발된 대부분의 자동 영상분할 방법은 비디오 객체의 명확한 수학적인 모델을 제시하기 곤란하며 한 화면에서 개별 객체를 추출하기 어렵기 때문에 그 성능에 한계가 있다. 본 논문에서는 이러한 문제점을 극복하기 위해 active contour 알고리즘을 이용한 반자동 영상분할 알고리즘을 제안한다. 초기 곡선으로부터 변화 가능한 모든 곡선의 집합을 모양공간으로 정의하고 그 공간을 선형공간이라고 가정하면, 모양공간(shape space)은 모양 행렬에 의해 행(column) 공간과 남은 빈(left null) 공간으로 나뉘어진다. 본 논문에서 제안하는 알고리즘은 행공간의 모양공간 벡터를 이용하여 초기 곡선으로부터 영상의 특징점까지의 변화를 기술하고 동적 그래프 검색 알고리즘을 이용하여 객체의 세밀한 부분을 묘사한다. 모양 행렬과 객체의 윤곽을 추정하기 위한 SUSAN 연산자의 사용으로 제안한 알고리즘은 저수준 영상처리로부터 생성되는 불필요한 특징점을 무시할 수 있다. 또한, 모양 행렬의 사용으로 생긴 제약은 동적 그래프 검색 알고리즘으로 보상한다.
This study aims to suggest guidelines of open classroom in open elementary school. It consists of following three parts. The first part takes a theoretical review of open education and open classroom. And the second makes analysis of architectural characteristics of open classroom as case studies which are analyzed in terms of modul, function and ratio of open space, etc. The last part is user need analysis of the open space.
이 연구에서는 문서 자동분류에서 분류자질 선정과 가중치 할당을 위해서 일관된 전략을 채택하여 kNN 분류기의 성능을 향상시킬 수 있는 방안을 모색하였다. 문서 자동 분류에서 분류자질 선정 방식과 자질 가중치 할당 방식은 자동분류 알고리즘과 함께 분류성능을 좌우하는 중요한 요소이다. 기존 연구에서는 이 두 방식을 결정할 때 상반된 전략을 사용해왔다. 이 연구에서는 색인파일 저장공간과 실행시간에 따른 분류성능을 기준으로 분류자질 선정 결과를 평가해서 기존 연구와 다른 결과를 얻었다. 상호정보량과 같은 저빈도 자질 선호 기준이나 심지어는 역문헌빈도를 이용해서 분류 자질을 선정하는 것이 kNN 분류기의 분류 효과와 효율 면에서 바람직한 것으로 나타났다. 자질 선정기준으로 저빈도 자질 선호 척도를 자질 선정 및 자질 가중치 할당에 일관되게 이용한 결과 분류성능의 저하 없이 kNN 분류기의 처리 속도를 약 3배에서 5배정도 향상시킬 수 있었다.
Namsrai, Erdenetuya;Munkhdalai, Tsendsuren;Li, Meijing;Shin, Jung-Hoon;Namsrai, Oyun-Erdene;Ryu, Keun Ho
Journal of Information Processing Systems
/
제9권1호
/
pp.31-40
/
2013
In this paper, a novel method is proposed to build an ensemble of classifiers by using a feature selection schema. The feature selection schema identifies the best feature sets that affect the arrhythmia classification. Firstly, a number of feature subsets are extracted by applying the feature selection schema to the original dataset. Then classification models are built by using the each feature subset. Finally, we combine the classification models by adopting a voting approach to form a classification ensemble. The voting approach in our method involves both classification error rate and feature selection rate to calculate the score of the each classifier in the ensemble. In our method, the feature selection rate depends on the extracting order of the feature subsets. In the experiment, we applied our method to arrhythmia dataset and generated three top disjointed feature sets. We then built three classifiers based on the top-three feature subsets and formed the classifier ensemble by using the voting approach. Our method can improve the classification accuracy in high dimensional dataset. The performance of each classifier and the performance of their ensemble were higher than the performance of the classifier that was based on whole feature space of the dataset. The classification performance was improved and a more stable classification model could be constructed with the proposed approach.
Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.
The exchange of parameterized feature-based CAD models is important for product data sharing among different organizations and automation systems. The role of feature-based modeling is to gonerate the shape of product and capture design intends In a CAD system. A feature is generated by referring to topological entities in a solid. Identifying referenced topological entities of a feature is essential for exchanging feature-based CAD models through a neutral format. If the CAD data contains the modification history in addition to the construction history, a matching mechanism is also required to find the same entity in the new model (post-edit model) corresponding to the entity in the old model (preedit model). This problem is known as the persistent naming problem. There are additional problems arising from the exchange of parameterized feature-based CAD models. Authors have analyzed previous studies with regard to persistent naming and characteristics for the exchange of parameterized feature-based CAD models, and propose a solution to the persistent naming problem. This solution is comprised of two parts: (a) naming of topological entities based on the object spore information (OSI) and secondary name (SN); and (b) name matching under the proposed naming.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.