• Title/Summary/Keyword: feature models

Search Result 1,118, Processing Time 0.021 seconds

Enhancing Wind Speed and Wind Power Forecasting Using Shape-Wise Feature Engineering: A Novel Approach for Improved Accuracy and Robustness

  • Mulomba Mukendi Christian;Yun Seon Kim;Hyebong Choi;Jaeyoung Lee;SongHee You
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.393-405
    • /
    • 2023
  • Accurate prediction of wind speed and power is vital for enhancing the efficiency of wind energy systems. Numerous solutions have been implemented to date, demonstrating their potential to improve forecasting. Among these, deep learning is perceived as a revolutionary approach in the field. However, despite their effectiveness, the noise present in the collected data remains a significant challenge. This noise has the potential to diminish the performance of these algorithms, leading to inaccurate predictions. In response to this, this study explores a novel feature engineering approach. This approach involves altering the data input shape in both Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and Autoregressive models for various forecasting horizons. The results reveal substantial enhancements in model resilience against noise resulting from step increases in data. The approach could achieve an impressive 83% accuracy in predicting unseen data up to the 24th steps. Furthermore, this method consistently provides high accuracy for short, mid, and long-term forecasts, outperforming the performance of individual models. These findings pave the way for further research on noise reduction strategies at different forecasting horizons through shape-wise feature engineering.

On an Optimal Artillery Deployment Plan (포대의 적정배치 방안)

  • Yun, Yun-Sang;Kim, Seong-Sik
    • Journal of the military operations research society of Korea
    • /
    • v.8 no.2
    • /
    • pp.17-30
    • /
    • 1982
  • This paper offers an optimal artillery deployment scheme for the defending unit when two forces are confronted at a military front line. When proposed gun sites, types and number of guns as well as targets are given, the solutions of the two models in this paper direct each (unit of) guns to a certain location. The aim of the models is to maximize the number of guns which can hit important targets. Unlike widely used target assignment models, these models are formulated using the set covering problem concept. These models do not contain probabilities and time. Thus they are simple as models, easy in implementation, and yield tractable solutions. The dynamic and probabilistic feature of battle situations is implicitly reflected on the models. The first model is for the case that enemies' approaching route is clearly predictable, while the second model is for the unpredictable approaching route case.

  • PDF

Feature-based Similarity Assessment for Re-using CAD Models (CAD 모델 재사용을 위한 특징형상기반 유사도 측정에 관한 연구)

  • Park, Byoung-Keon;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • Similarity assessment of a CAD model is one of important issues from the aspect of model re-using. In real practice, many new mechanical parts are designed by modifying existing ones. The reuse of part enables to save design time and efforts for the designers. Design time would be further reduced if there were an efficient way to search for existing similar designs. This paper proposes an efficient algorithm of similarity assessment for mechanical part model with design history embedded within the CAD model. Since it is possible to retrieve the design history and detailed-feature information using CAD API, we can obtain an accurate and reliable assessment result. For our purpose, our assessment algorithm can be divided by two: (1) we select suitable parts by comparing MSG (Model Signature Graph) extracted from a base feature of the required model; (2) detailed-features' similarities are assessed with their own attributes and reference structures. In addition, we also propose a indexing method for managing a model database in the last part of this article.

A Feature Vector Selection Method for Cancer Classification

  • Yun, Zheng;Keong, Kwoh-Chee
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.23-28
    • /
    • 2005
  • The high-dimensionality and insufficiency of gene expression profiles and proteomic profiles makes feature selection become a critical step in efficiently building accurate models for cancer problems based on such data sets. In this paper, we use a method, called Discrete Function Learning algorithm, to find discriminatory feature vectors based on information theory. The target feature vectors contain all or most information (in terms of entropy) of the class attribute. Two data sets are selected to validate our approach, one leukemia subtype gene expression data set and one ovarian cancer proteomic data set. The experimental results show that the our method generalizes well when applied to these insufficient and high-dimensional data sets. Furthermore, the obtained classifiers are highly understandable and accurate.

  • PDF

Design of Fuzzy k-Nearest Neighbors Classifiers based on Feature Extraction by using Stacked Autoencoder (Stacked Autoencoder를 이용한 특징 추출 기반 Fuzzy k-Nearest Neighbors 패턴 분류기 설계)

  • Rho, Suck-Bum;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.113-120
    • /
    • 2015
  • In this paper, we propose a feature extraction method using the stacked autoencoders which consist of restricted Boltzmann machines. The stacked autoencoders is a sort of deep networks. Restricted Boltzmann machines (RBMs) are probabilistic graphical models that can be interpreted as stochastic neural networks. In terms of pattern classification problem, the feature extraction is a key issue. We use the stacked autoencoders networks to extract new features which have a good influence on the improvement of the classification performance. After feature extraction, fuzzy k-nearest neighbors algorithm is used for a classifier which classifies the new extracted data set. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.

Microphone Type Classification for Digital Audio Forgery Detection (디지털 오디오 위조검출을 위한 마이크로폰 타입 인식)

  • Seok, Jongwon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.3
    • /
    • pp.323-329
    • /
    • 2015
  • In this paper we applied pattern recognition approach to detect audio forgery. Classification of the microphone types and models can help determining the authenticity of the recordings. Canonical correlation analysis was applied to extract feature for microphone classification. We utilized the linear dependence between two near-silence regions. To utilize the advantage of multi-feature based canonical correlation analysis, we selected three commonly used features to capture the temporal and spectral characteristics. Using three different microphones, we tested the usefulness of multi-feature based characteristics of canonical correlation analysis and compared the results with single feature based method. The performance of classification rate was carried out using the backpropagation neural network. Experimental results show the promise of canonical correlation features for microphone classification.

Noisy Speech Recognition Based on Noise-Adapted HMMs Using Speech Feature Compensation

  • Chung, Yong-Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • The vector Taylor series (VTS) based method usually employs clean speech Hidden Markov Models (HMMs) when compensating speech feature vectors or adapting the parameters of trained HMMs. It is well-known that noisy speech HMMs trained by the Multi-condition TRaining (MTR) and the Multi-Model-based Speech Recognition framework (MMSR) method perform better than the clean speech HMM in noisy speech recognition. In this paper, we propose a method to use the noise-adapted HMMs in the VTS-based speech feature compensation method. We derived a novel mathematical relation between the train and the test noisy speech feature vector in the log-spectrum domain and the VTS is used to estimate the statistics of the test noisy speech. An iterative EM algorithm is used to estimate train noisy speech from the test noisy speech along with noise parameters. The proposed method was applied to the noise-adapted HMMs trained by the MTR and MMSR and could reduce the relative word error rate significantly in the noisy speech recognition experiments on the Aurora 2 database.

Generation of 3D STEP Model from 2D Drawings Using Feature Definition of Ship Structure (선체구조 특징형상 정의에 의한 2D 도면에서 3D STEP 선체 모델의 생성)

  • 황호진;한순흥;김용대
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.122-132
    • /
    • 2003
  • STEP AP218 has a standard schema to represent the structural model of a midship section. While it helps to exchange ship structural models among heterogeneous automation systems, most shipyards and classification societies still exchange information using 2D paper drawings. We propose a feature parameter input method to generate a 3D STEP model of a ship structure from 2D drawings. We have analyzed the ship structure information contained in 2D drawings and have defined a data model to express the contents of the drawing. We also developed a QUI for the feature parameter input. To translate 2D information extracted from the drawing into a STEP AP2l8 model, we have developed a shape generation library, and generated the 3D ship model through this library. The generated 3D STEP model of a ship structure can be used to exchange information between design departments in a shipyard as well as between classification societies and shipyards.

Robust appearance feature learning using pixel-wise discrimination for visual tracking

  • Kim, Minji;Kim, Sungchan
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.483-493
    • /
    • 2019
  • Considering the high dimensions of video sequences, it is often challenging to acquire a sufficient dataset to train the tracking models. From this perspective, we propose to revisit the idea of hand-crafted feature learning to avoid such a requirement from a dataset. The proposed tracking approach is composed of two phases, detection and tracking, according to how severely the appearance of a target changes. The detection phase addresses severe and rapid variations by learning a new appearance model that classifies the pixels into foreground (or target) and background. We further combine the raw pixel features of the color intensity and spatial location with convolutional feature activations for robust target representation. The tracking phase tracks a target by searching for frame regions where the best pixel-level agreement to the model learned from the detection phase is achieved. Our two-phase approach results in efficient and accurate tracking, outperforming recent methods in various challenging cases of target appearance changes.

Term Frequency-Inverse Document Frequency (TF-IDF) Technique Using Principal Component Analysis (PCA) with Naive Bayes Classification

  • J.Uma;K.Prabha
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.113-118
    • /
    • 2024
  • Pursuance Sentiment Analysis on Twitter is difficult then performance it's used for great review. The present be for the reason to the tweet is extremely small with mostly contain slang, emoticon, and hash tag with other tweet words. A feature extraction stands every technique concerning structure and aspect point beginning particular tweets. The subdivision in a aspect vector is an integer that has a commitment on ascribing a supposition class to a tweet. The cycle of feature extraction is to eradicate the exact quality to get better the accurateness of the classifications models. In this manuscript we proposed Term Frequency-Inverse Document Frequency (TF-IDF) method is to secure Principal Component Analysis (PCA) with Naïve Bayes Classifiers. As the classifications process, the work proposed can produce different aspects from wildly valued feature commencing a Twitter dataset.