• 제목/요약/키워드: feature model validation

검색결과 110건 처리시간 0.029초

Enhancing prediction accuracy of concrete compressive strength using stacking ensemble machine learning

  • Yunpeng Zhao;Dimitrios Goulias;Setare Saremi
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.233-246
    • /
    • 2023
  • Accurate prediction of concrete compressive strength can minimize the need for extensive, time-consuming, and costly mixture optimization testing and analysis. This study attempts to enhance the prediction accuracy of compressive strength using stacking ensemble machine learning (ML) with feature engineering techniques. Seven alternative ML models of increasing complexity were implemented and compared, including linear regression, SVM, decision tree, multiple layer perceptron, random forest, Xgboost and Adaboost. To further improve the prediction accuracy, a ML pipeline was proposed in which the feature engineering technique was implemented, and a two-layer stacked model was developed. The k-fold cross-validation approach was employed to optimize model parameters and train the stacked model. The stacked model showed superior performance in predicting concrete compressive strength with a correlation of determination (R2) of 0.985. Feature (i.e., variable) importance was determined to demonstrate how useful the synthetic features are in prediction and provide better interpretability of the data and the model. The methodology in this study promotes a more thorough assessment of alternative ML algorithms and rather than focusing on any single ML model type for concrete compressive strength prediction.

Feature Selection with Ensemble Learning for Prostate Cancer Prediction from Gene Expression

  • Abass, Yusuf Aleshinloye;Adeshina, Steve A.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12spc호
    • /
    • pp.526-538
    • /
    • 2021
  • Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.

Application and testing of a triple bubbler sensor in molten salts

  • Williams, A.N.;Shigrekar, A.;Galbreth, G.G.;Sanders, J.
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1452-1461
    • /
    • 2020
  • A triple bubbler sensor was tested in LiCl-KCl molten salt from 450 to 525 ℃ in a transparent furnace to validate thermal-expansion corrections and provide additional molten salt data sets for calibration and validation of the sensor. In addition to these tests, a model was identified and further developed to accurately determine the density, surface tension, and depth from the measured bubble pressures. A unique feature of the model is that calibration constants can be estimated using independent depth measurements, which allow calibration and validation of the sensor in an electrorefiner where the salt density and surface tension are largely unknown. This model and approach were tested using the current and previous triple bubbler data sets, and results indicate that accuracies are as high as 0.03%, 4.6%, and 0.15% for density, surface tension, and depth, respectively.

A Study on the Prediction of Community Smart Pension Intention Based on Decision Tree Algorithm

  • Liu, Lijuan;Min, Byung-Won
    • International Journal of Contents
    • /
    • 제17권4호
    • /
    • pp.79-90
    • /
    • 2021
  • With the deepening of population aging, pension has become an urgent problem in most countries. Community smart pension can effectively resolve the problem of traditional pension, as well as meet the personalized and multi-level needs of the elderly. To predict the pension intention of the elderly in the community more accurately, this paper uses the decision tree classification method to classify the pension data. After missing value processing, normalization, discretization and data specification, the discretized sample data set is obtained. Then, by comparing the information gain and information gain rate of sample data features, the feature ranking is determined, and the C4.5 decision tree model is established. The model performs well in accuracy, precision, recall, AUC and other indicators under the condition of 10-fold cross-validation, and the precision was 89.5%, which can provide the certain basis for government decision-making.

Subset 샘플링 검증 기법을 활용한 MSCRED 모델 기반 발전소 진동 데이터의 이상 진단 (Anomaly Detection In Real Power Plant Vibration Data by MSCRED Base Model Improved By Subset Sampling Validation)

  • 홍수웅;권장우
    • 융합정보논문지
    • /
    • 제12권1호
    • /
    • pp.31-38
    • /
    • 2022
  • 본 논문은 전문가 독립적 비지도 신경망 학습 기반 다변량 시계열 데이터 분석 모델인 MSCRED(Multi-Scale Convolutional Recurrent Encoder-Decoder)의 실제 현장에서의 적용과 Auto-encoder 기반인 MSCRED 모델의 한계인, 학습 데이터가 오염되지 않아야 된다는 점을 극복하기 위한 학습 데이터 샘플링 기법인 Subset Sampling Validation을 제시한다. 라벨 분류가 되어있는 발전소 장비의 진동 데이터를 이용하여 1) 학습 데이터에 비정상 데이터가 섞여 있는 상황을 재현하고, 이를 학습한 경우 2) 1과 같은 상황에서 Subset Sampling Validation 기법을 통해 학습 데이터에서 비정상 데이터를 제거한 경우의 Anomaly Score를 비교하여 MSCRED와 Subset Sampling Validation 기법을 유효성을 평가한다. 이를 통해 본 논문은 전문가 독립적이며 오류 데이터에 강한 이상 진단 프레임워크를 제시해, 다양한 다변량 시계열 데이터 분야에서의 간결하고 정확한 해결 방법을 제시한다.

Spatial Information Based Simulator for User Experience's Optimization

  • Bang, Green;Ko, Ilju
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권3호
    • /
    • pp.97-104
    • /
    • 2016
  • In this paper, we propose spatial information based simulator for user experience optimization and minimize real space complexity. We focus on developing simulator how to design virtual space model and to implement virtual character using real space data. Especially, we use expanded events-driven inference model for SVM based on machine learning. Our simulator is capable of feature selection by k-fold cross validation method for optimization of data learning. This strategy efficiently throughput of executing inference of user behavior feature by virtual space model. Thus, we aim to develop the user experience optimization system for people to facilitate mapping as the first step toward to daily life data inference. Methodologically, we focus on user behavior and space modeling for implement virtual space.

A ResNet based multiscale feature extraction for classifying multi-variate medical time series

  • Zhu, Junke;Sun, Le;Wang, Yilin;Subramani, Sudha;Peng, Dandan;Nicolas, Shangwe Charmant
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1431-1445
    • /
    • 2022
  • We construct a deep neural network model named ECGResNet. This model can diagnosis diseases based on 12-lead ECG data of eight common cardiovascular diseases with a high accuracy. We chose the 16 Blocks of ResNet50 as the main body of the model and added the Squeeze-and-Excitation module to learn the data information between channels adaptively. We modified the first convolutional layer of ResNet50 which has a convolutional kernel of 7 to a superposition of convolutional kernels of 8 and 16 as our feature extraction method. This way allows the model to focus on the overall trend of the ECG signal while also noticing subtle changes. The model further improves the accuracy of cardiovascular and cerebrovascular disease classification by using a fully connected layer that integrates factors such as gender and age. The ECGResNet model adds Dropout layers to both the residual block and SE module of ResNet50, further avoiding the phenomenon of model overfitting. The model was eventually trained using a five-fold cross-validation and Flooding training method, with an accuracy of 95% on the test set and an F1-score of 0.841.We design a new deep neural network, innovate a multi-scale feature extraction method, and apply the SE module to extract features of ECG data.

Finding Biomarker Genes for Type 2 Diabetes Mellitus using Chi-2 Feature Selection Method and Logistic Regression Supervised Learning Algorithm

  • Alshamlan, Hala M
    • International Journal of Computer Science & Network Security
    • /
    • 제21권2호
    • /
    • pp.9-13
    • /
    • 2021
  • Type 2 diabetes mellitus (T2D) is a complex diabetes disease that is caused by high blood sugar, insulin resistance, and a relative lack of insulin. Many studies are trying to predict variant genes that causes this disease by using a sample disease model. In this paper we predict diabetic and normal persons by using fisher score feature selection, chi-2 feature selection and Logistic Regression supervised learning algorithm with best accuracy of 90.23%.

Application of Soft Computing Model for Hydrologic Forecasting

  • Kim, Sung-Won;Park, Ki-Bum
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.336-339
    • /
    • 2012
  • Accurate forecasting of pan evaporation (PE) is very important for monitoring, survey, and management of water resources. The purpose of this study is to develop and apply Kohonen self-organizing feature maps neural networks model (KSOFM-NNM) to forecast the daily PE for the dry climate region in south western Iran. KSOFM-NNM for Ahwaz station was used to forecast daily PE on the basis of temperature-based, radiation-based, and sunshine duration-based input combinations. The measurements at Ahwaz station in south western Iran, for the period of January 2002 - December 2008, were used for training, cross-validation and testing data of KSOFM-NNM. The results obtained by TEM 1 produced the best results among other combinations for Ahwaz station. Based on the comparisons, it was found that KSOFM-NNM can be employed successfully for forecasting the daily PE from the limited climatic data in south western Iran.

  • PDF

음악추천을 위한 다중 옥타브 밴드 기반 장르 분류기 (Multiple octave-band based genre classification algorithm for music recommendation)

  • 임신철;장세진;이석필;김무영
    • 한국정보통신학회논문지
    • /
    • 제15권7호
    • /
    • pp.1487-1494
    • /
    • 2011
  • 본 논문은 음악 추천을 위한 새로운 장르 분류 알고리즘을 제안하였다. 특히, 장르 분류 알고리즘에 사용되는 특정 벡터 중 octave-based spectral contrast (OSC)의 성능 개선을 위해서 심리청각 모델과 악기별 사용 octave 범위에 근거하여 새로운 band-pass filter를 설계하였다. 10개 장르별 음악을 포함하고 있는 GTZAN database에 대해서 10-fold cross validation 실험 결과, 다중 옥타브 밴드 OSC에 대해서 기존 OSC에 비해 2.26% 향상된 인식율을 얻을 수 있었다. 또한, 기존의 mel-frequency cepstral coefficient (MFCC)와 복합 특징 벡터를 구성하여 실험한 결과, 향상된 인식율을 얻을 수 있었다.