• Title/Summary/Keyword: feature interaction

Search Result 381, Processing Time 0.032 seconds

Near-body Interaction Enhancement with Distance Perception Matching in Immersive Virtual Environment

  • Yang, Ungyeon;Kim, Nam-Gyu
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.111-120
    • /
    • 2021
  • As recent virtual reality technologies provide a more natural three-dimensional interactive environment, users naturally learn to explore space and interact with synthetic objects. The virtual reality researcher develops a technique that realizes realistic sensory feedback to get appropriate feedback to sense input behavior. Although much recent virtual reality research works extensively consider the human factor, it is not easy to adapt to all new virtual environment contents. Among many human factors, distance perception has been treated as very important in virtual environment interaction accuracy. We study the experiential virtual environment with the feature of the virtual object connected with the real object. We divide the three-dimensional interaction, in which distance perception and behavior have a significant influence, into two types (whole-body movement and direct manipulation) and analyze the real and virtual visual distance perception heterogeneity phenomenon. Also, we propose a statistical correction method that can reduce a near-body movement and manipulation error when changing the interaction location and report the experiment results proving its effectiveness.

Gesture Extraction for Ubiquitous Robot-Human Interaction (유비쿼터스 로봇과 휴먼 인터액션을 위한 제스쳐 추출)

  • Kim, Moon-Hwan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1062-1067
    • /
    • 2005
  • This paper discusses a skeleton feature extraction method for ubiquitous robot system. The skeleton features are used to analyze human motion and pose estimation. In different conventional feature extraction environment, the ubiquitous robot system requires more robust feature extraction method because it has internal vibration and low image quality. The new hybrid silhouette extraction method and adaptive skeleton model are proposed to overcome this constrained environment. The skin color is used to extract more sophisticated feature points. Finally, the experimental results show the superiority of the proposed method.

Use of Word Clustering to Improve Emotion Recognition from Short Text

  • Yuan, Shuai;Huang, Huan;Wu, Linjing
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.103-110
    • /
    • 2016
  • Emotion recognition is an important component of affective computing, and is significant in the implementation of natural and friendly human-computer interaction. An effective approach to recognizing emotion from text is based on a machine learning technique, which deals with emotion recognition as a classification problem. However, in emotion recognition, the texts involved are usually very short, leaving a very large, sparse feature space, which decreases the performance of emotion classification. This paper proposes to resolve the problem of feature sparseness, and largely improve the emotion recognition performance from short texts by doing the following: representing short texts with word cluster features, offering a novel word clustering algorithm, and using a new feature weighting scheme. Emotion classification experiments were performed with different features and weighting schemes on a publicly available dataset. The experimental results suggest that the word cluster features and the proposed weighting scheme can partly resolve problems with feature sparseness and emotion recognition performance.

Development of Feature-based Classification Software for High Resolution Satellite Imagery (고해상도 위성영상의 분류를 위한 형상 기반 분류 소프트웨어 개발)

  • Jeong, Soo;Lee, Chang-No
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.53-59
    • /
    • 2004
  • In this paper, we investigated a method for feature-based classification to develop a software which is suitable for the classification of high resolution satellite imagery. We developed algorithms for image segmentation and fuzzy-based classification required for feature-based classification and designed user interfaces to support interaction with user, considering various elements required for the feature-based classification. Evaluation of the software was accomplished using real image. Classification results were compared and analysed with eCognition software which is unique commercial software for feature-based classification. The classification results from both softwares showed essentially same results and the developed software showed better result in the processing speed.

  • PDF

Hand Gesture Recognition Using an Infrared Proximity Sensor Array

  • Batchuluun, Ganbayar;Odgerel, Bayanmunkh;Lee, Chang Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.186-191
    • /
    • 2015
  • Hand gesture is the most common tool used to interact with and control various electronic devices. In this paper, we propose a novel hand gesture recognition method using fuzzy logic based classification with a new type of sensor array. In some cases, feature patterns of hand gesture signals cannot be uniquely distinguished and recognized when people perform the same gesture in different ways. Moreover, differences in the hand shape and skeletal articulation of the arm influence to the process. Manifold features were extracted, and efficient features, which make gestures distinguishable, were selected. However, there exist similar feature patterns across different hand gestures, and fuzzy logic is applied to classify them. Fuzzy rules are defined based on the many feature patterns of the input signal. An adaptive neural fuzzy inference system was used to generate fuzzy rules automatically for classifying hand gestures using low number of feature patterns as input. In addition, emotion expression was conducted after the hand gesture recognition for resultant human-robot interaction. Our proposed method was tested with many hand gesture datasets and validated with different evaluation metrics. Experimental results show that our method detects more hand gestures as compared to the other existing methods with robust hand gesture recognition and corresponding emotion expressions, in real time.

Feature Model Specification Method in Product-Line Development (프로덕트 라인 개발에서 피쳐 모델의 명세화 기법)

  • 송재승;김민성;박수용
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1001-1014
    • /
    • 2003
  • In a feature modeling, problems such as ambiguities, interpretation errors, incompleteness, etc caused by informal specification occur in the modeling phase. Therefore, feature specification method and processes are suggested in this paper to resolve these problems. The structure and language of feature modeling is defined in this paper to specify various features. First, this feature model is abstracted in the meta-level to get predicates and attributes. Formal feature model specification method is proposed using multi-paradigm language. Second, Feature specification process is proposed to describe how to specify feature formally. And third, Feature interaction management is defined to solve the problems caused between specified features. Finally, the proposed feature specification method is applied to Distributed Meeting Scheduler System domain.

Nonlinear Feature Extraction using Class-augmented Kernel PCA (클래스가 부가된 커널 주성분분석을 이용한 비선형 특징추출)

  • Park, Myoung-Soo;Oh, Sang-Rok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.7-12
    • /
    • 2011
  • In this papwer, we propose a new feature extraction method, named as Class-augmented Kernel Principal Component Analysis (CA-KPCA), which can extract nonlinear features for classification. Among the subspace method that was being widely used for feature extraction, Class-augmented Principal Component Analysis (CA-PCA) is a recently one that can extract features for a accurate classification without computational difficulties of other methods such as Linear Discriminant Analysis (LDA). However, the features extracted by CA-PCA is still restricted to be in a linear subspace of the original data space, which limites the use of this method for various problems requiring nonlinear features. To resolve this limitation, we apply a kernel trick to develop a new version of CA-PCA to extract nonlinear features, and evaluate its performance by experiments using data sets in the UCI Machine Learning Repository.

Feature Selecting and Classifying Integrated Neural Network Algorithm for Multi-variate Classification (다변량 데이터의 분류 성능 향상을 위한 특질 추출 및 분류 기법을 통합한 신경망 알고리즘)

  • Yoon, Hyun-Soo;Baek, Jun-Geol
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.97-104
    • /
    • 2011
  • Research for multi-variate classification has been studied through two kinds of procedures which are feature selection and classification. Feature Selection techniques have been applied to select important features and the other one has improved classification performances through classifier applications. In general, each technique has been independently studied, however consideration of the interaction between both procedures has not been widely explored which leads to a degraded performance. In this paper, through integrating these two procedures, classification performance can be improved. The proposed model takes advantage of KBANN (Knowledge-Based Artificial Neural Network) which uses prior knowledge to learn NN (Neural Network) as training information. Each NN learns characteristics of the Feature Selection and Classification techniques as training sets. The integrated NN can be learned again to modify features appropriately and enhance classification performance. This innovative technique is called ALBNN (Algorithm Learning-Based Neural Network). The experiments' results show improved performance in various classification problems.

Pairwise Neural Networks for Predicting Compound-Protein Interaction (약물-표적 단백질 연관관계 예측모델을 위한 쌍 기반 뉴럴네트워크)

  • Lee, Munhwan;Kim, Eunghee;Kim, Hong-Gee
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.4
    • /
    • pp.299-314
    • /
    • 2017
  • Predicting compound-protein interactions in-silico is significant for the drug discovery. In this paper, we propose an scalable machine learning model to predict compound-protein interaction. The key idea of this scalable machine learning model is the architecture of pairwise neural network model and feature embedding method from the raw data, especially for protein. This method automatically extracts the features without additional knowledge of compound and protein. Also, the pairwise architecture elevate the expressiveness and compact dimension of feature by preventing biased learning from occurring due to the dimension and type of features. Through the 5-fold cross validation results on large scale database show that pairwise neural network improves the performance of predicting compound-protein interaction compared to previous prediction models.

Feature-Based Non-manifold Geometric Modeling System to Provide Integrated Environment for Design and Analysis of Injection Molding Products (사출 성형 제품의 설계 및 해석의 통합 환경을 제공하기 위한 특징 형상 기반 비다양체 모델링 시스템의 개발)

  • 이상헌;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.133-149
    • /
    • 1996
  • In order to reduce the trial-and-errors in design and production of injection molded plastic parts, there has been much research effort not only on CAE systems which simulate the injection molding process, but also on CAD systems which support initial design and re-design of plastic parts and their molds. The CAD systems and CAE systems have been developed independently with being built on different basis. That is, CAD systems manipulate the part shapes and the design features in a complete solid model, while CAE systems work on shell meshes generated on the abstract sheet model or medial surface of the part. Therefore, it is required to support the two types of geometric models and feature information in one environment to integrate CAD and CAE systems for accelerating the design speed. A feature-based non-manifold geometric modeling system has been developed to provide an integrated environment for design and analysis of injection molding products. In this system, the geometric models for CAD and CAE systems are represented by a non-manifold boundary representation and they are merged into a single geometric model. The suitable form of geometric model for any application can be extracted from this model. In addition, the feature deletion and interaction problem of the feature-based design system has been solved clearly by introducing the non-manifold Boolean operation based on 'merge and selection' algorithm. The sheet modeling capabilities were also developed for easy modeling of thin plastic parts.

  • PDF