• Title/Summary/Keyword: feature generation

Search Result 615, Processing Time 0.027 seconds

Generation and Transmission of Progressive Solid Models U sing Cellular Topology (셀룰러 토폴로지를 이용한 프로그레시브 솔리드 모델 생성 및 전송)

  • Lee, J.Y.;Lee, J.H.;Kim, H.;Kim, H.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.122-132
    • /
    • 2004
  • Progressive mesh representation and generation have become one of the most important issues in network-based computer graphics. However, current researches are mostly focused on triangular mesh models. On the other hand, solid models are widely used in industry and are applied to advanced applications such as product design and virtual assembly. Moreover, as the demand to share and transmit these solid models over the network is emerging, the generation and the transmission of progressive solid models depending on specific engineering needs and purpose are essential. In this paper, we present a Cellular Topology-based approach to generating and transmitting progressive solid models from a feature-based solid model for internet-based design and collaboration. The proposed approach introduces a new scheme for storing and transmitting solid models over the network. The Cellular Topology (CT) approach makes it possible to effectively generate progressive solid models and to efficiently transmit the models over the network with compact model size. Thus, an arbitrary solid model SM designed by a set of design features is stored as a much coarser solid model SM/sup 0/ together with a sequence of n detail records that indicate how to incrementally refine SM/sup 0/ exactly back into the original solid model SM = SM/sup 0/.

A New Islanding Detection Method Based on Feature Recognition Technology

  • Zheng, Xinxin;Xiao, Lan;Qin, Wenwen;Zhang, Qing
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.760-768
    • /
    • 2016
  • Three-phase grid-connected inverters are widely applied in the fields of new energy power generation, electric vehicles and so on. Islanding detection is necessary to ensure the stability and safety of such systems. In this paper, feature recognition technology is applied and a novel islanding detection method is proposed. It can identify the features of inverter systems. The theoretical values of these features are defined as codebooks. The difference between the actual value of a feature and the codebook is defined as the quantizing distortion. When islanding happens, the sum of the quantizing distortions exceeds the threshold value. Thus, islanding can be detected. The non-detection zone can be avoided by choosing reasonable features. To accelerate the speed of detection and to avoid miscalculation, an active islanding detection method based on feature recognition technology is given. Compared to the active frequency or phase drift methods, the proposed active method can reduce the distortion of grid-current when the inverter works normally. The principles of the islanding detection method based on the feature recognition technology and the improved active method are both analyzed in detail. An 18 kVA DSP-based three-phase inverter with the SVPWM control strategy has been established and tested. Simulation and experimental results verify the theoretical analysis.

A Prototype Implementation for 3D Animated Anaglyph Rendering of Multi-typed Urban Features using Standard OpenGL API

  • Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.401-408
    • /
    • 2007
  • Animated anaglyph is the most cost-effective method for 3D stereo visualization of virtual or actual 3D geo-based data model. Unlike 3D anaglyph scene generation using paired epipolar images, the main data sets of this study is the multi-typed 3D feature model containing 3D shaped objects, DEM and satellite imagery. For this purpose, a prototype implementation for 3D animated anaglyph using OpenGL API is carried out, and virtual 3D feature modeling is performed to demonstrate the applicability of this anaglyph approach. Although 3D features are not real objects in this stage, these can be substituted with actual 3D feature model with full texture images along all facades. Currently, it is regarded as the special viewing effect within 3D GIS application domains, because just stereo 3D viewing is a part of lots of GIS functionalities or remote sensing image processing modules. Animated anaglyph process can be linked with real-time manipulation process of 3D feature model and its database attributes in real world problem. As well, this approach of feature-based 3D animated anaglyph scheme is a bridging technology to further image-based 3D animated anaglyph rendering system, portable mobile 3D stereo viewing system or auto-stereo viewing system without glasses for multi-viewers.

Automatic facial expression generation system of vector graphic character by simple user interface (간단한 사용자 인터페이스에 의한 벡터 그래픽 캐릭터의 자동 표정 생성 시스템)

  • Park, Tae-Hee;Kim, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1155-1163
    • /
    • 2009
  • This paper proposes an automatic facial expression generation system of vector graphic character using gaussian process model. Proposed method extracts the main feature vectors from twenty-six facial data of character redefined based on Russell's internal emotion state. Also by using new gaussian process model, SGPLVM, we find low-dimensional feature data from extracted high-dimensional feature vectors, and learn probability distribution function (PDF). All parameters of PDF are estimated by maximization the likelihood of learned expression data, and these are used to select wanted facial expressions on two-dimensional space in real time. As a result of simulation, we confirm that proposed facial expression generation tool is working in the small facial expression datasets and can generate various facial expressions without prior knowledge about relation between facial expression and emotion.

  • PDF

A novel method to aging state recognition of viscoelastic sandwich structures

  • Qu, Jinxiu;Zhang, Zhousuo;Luo, Xue;Li, Bing;Wen, Jinpeng
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1183-1210
    • /
    • 2016
  • Viscoelastic sandwich structures (VSSs) are widely used in mechanical equipment, but in the service process, they always suffer from aging which affect the whole performance of equipment. Therefore, aging state recognition of VSSs is significant to monitor structural state and ensure the reliability of equipment. However, non-stationary vibration response signals and weak state change characteristics make this task challenging. This paper proposes a novel method for this task based on adaptive second generation wavelet packet transform (ASGWPT) and multiwavelet support vector machine (MWSVM). For obtaining sensitive feature parameters to different structural aging states, the ASGWPT, its wavelet function can adaptively match the frequency spectrum characteristics of inspected vibration response signal, is developed to process the vibration response signals for energy feature extraction. With the aim to improve the classification performance of SVM, based on the kernel method of SVM and multiwavelet theory, multiwavelet kernel functions are constructed, and then MWSVM is developed to classify the different aging states. In order to demonstrate the effectiveness of the proposed method, different aging states of a VSS are created through the hot oxygen accelerated aging of viscoelastic material. The application results show that the proposed method can accurately and automatically recognize the different structural aging states and act as a promising approach to aging state recognition of VSSs. Furthermore, the capability of ASGWPT in processing the vibration response signals for feature extraction is validated by the comparisons with conventional second generation wavelet packet transform, and the performance of MWSVM in classifying the structural aging states is validated by the comparisons with traditional wavelet support vector machine.

An Effective Feature Generation Method for Distributed Denial of Service Attack Detection using Entropy (엔트로피를 이용한 분산 서비스 거부 공격 탐지에 효과적인 특징 생성 방법 연구)

  • Kim, Tae-Hun;Seo, Ki-Taek;Lee, Young-Hoon;Lim, Jong-In;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.4
    • /
    • pp.63-73
    • /
    • 2010
  • Malicious bot programs, the source of distributed denial of service attack, are widespread and the number of PCs which were infected by malicious bot program are increasing geometrically thesedays. The continuous distributed denial of service attacks are happened constantly through these bot PCs and some financial incident cases have found lately. Therefore researches to response distributed denial of service attack are necessary so we propose an effective feature generation method for distributed denial of service attack detection using entropy. In this paper, we apply our method to both the DARPA 2000 datasets and also the distributed denial of service attack datasets that we composed and generated ourself in general university. And then we evaluate how the proposed method is useful through classification using bayesian network classifier.

Stacked Autoencoder Based Malware Feature Refinement Technology Research (Stacked Autoencoder 기반 악성코드 Feature 정제 기술 연구)

  • Kim, Hong-bi;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.593-603
    • /
    • 2020
  • The advent of malicious code has increased exponentially due to the spread of malicious code generation tools in accordance with the development of the network, but there is a limit to the response through existing malicious code detection methods. According to this situation, a machine learning-based malicious code detection method is evolving, and in this paper, the feature of data is extracted from the PE header for machine-learning-based malicious code detection, and then it is used to automate the malware through autoencoder. Research on how to extract the indicated features and feature importance. In this paper, 549 features composed of information such as DLL/API that can be identified from PE files that are commonly used in malware analysis are extracted, and autoencoder is used through the extracted features to improve the performance of malware detection in machine learning. It was proved to be successful in providing excellent accuracy and reducing the processing time by 2 times by effectively extracting the features of the data by compressively storing the data. The test results have been shown to be useful for classifying malware groups, and in the future, a classifier such as SVM will be introduced to continue research for more accurate malware detection.

A Study on Feature-Based Multi-Resolution Modelling - Part II: System Implementation and Criteria for Level of Detail (특징형상기반 다중해상도 모델링에 관한 연구 - Part II: 시스템 구현 및 상세수준 판단기준)

  • Lee K.Y.;Lee S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.444-454
    • /
    • 2005
  • Recently, the requirements of multi-resolution models of a solid model, which represent an object at multiple levels of feature detail, are increasing for engineering tasks such as analysis, network-based collaborative design, and virtual prototyping and manufacturing. The research on this area has focused on several topics: topological frameworks for representing multi-resolution solid models, criteria for the level of detail (LOD), and generation of valid models after rearrangement of features. As a solution to the feature rearrangement problem, the new concept of the effective zone of a feature is introduced in the former part of the paper. In this paper, we propose a feature-based non-manifold modeling system to provide multi-resolution models of a feature-based solid or non-manifold model on the basis of the effective feature zones. To facilitate the implementation, we introduce the class of the multi-resolution feature whose attributes contain all necessary information to build a multi-resolution solid model and extract LOD models from it. In addition, two methods are introduced to accelerate the extraction of LOD models from the multi-resolution modeling database: the one is using an NMT model, known as a merged set, to represent multi-resolution models, and the other is storing differences between adjacent LOD models to accelerate the transition to the other LOD. We also suggest the volume of the feature, regardless of feature type, as a criterion for the LOD. This criterion can be used in a wide range of applications, since there is no distinction between additive and subtractive features unlike the previous method.

Rich Transcription Generation Using Automatic Insertion of Punctuation Marks (자동 구두점 삽입을 이용한 Rich Transcription 생성)

  • Kim, Ji-Hwan
    • MALSORI
    • /
    • no.61
    • /
    • pp.87-100
    • /
    • 2007
  • A punctuation generation system which combines prosodic information with acoustic and language model information is presented. Experiments have been conducted first for the reference text transcriptions. In these experiments, prosodic information was shown to be more useful than language model information. When these information sources are combined, an F-measure of up to 0.7830 was obtained for adding punctuation to a reference transcription. This method of punctuation generation can also be applied to the 1-best output of a speech recogniser. The 1-best output is first time aligned. Based on the time alignment information, prosodic features are generated. As in the approach applied in the punctuation generation for reference transcriptions, the best sequence of punctuation marks for this 1-best output is found using the prosodic feature model and an language model trained on texts which contain punctuation marks.

  • PDF

Forecasting of Short-term Wind Power Generation Based on SVR Using Characteristics of Wind Direction and Wind Speed (풍향과 풍속의 특징을 이용한 SVR기반 단기풍력발전량 예측)

  • Kim, Yeong-ju;Jeong, Min-a;Son, Nam-rye
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1085-1092
    • /
    • 2017
  • In this paper, we propose a wind forecasting method that reflects wind characteristics to improve the accuracy of wind power prediction. The proposed method consists of extracting wind characteristics and predicting power generation. The part that extracts the characteristics of the wind uses correlation analysis of power generation amount, wind direction and wind speed. Based on the correlation between the wind direction and the wind speed, the feature vector is extracted by clustering using the K-means method. In the prediction part, machine learning is performed using the SVR that generalizes the SVM so that an arbitrary real value can be predicted. Machine learning was compared with the proposed method which reflects the characteristics of wind and the conventional method which does not reflect wind characteristics. To verify the accuracy and feasibility of the proposed method, we used the data collected from three different locations of Jeju Island wind farm. Experimental results show that the error of the proposed method is better than that of general wind power generation.