• Title/Summary/Keyword: feature extract

Search Result 1,160, Processing Time 0.029 seconds

Development of Simulation Software for EEG Signal Accuracy Improvement (EEG 신호 정확도 향상을 위한 시뮬레이션 소프트웨어 개발)

  • Jeong, Haesung;Lee, Sangmin;Kwon, Jangwoo
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.221-228
    • /
    • 2016
  • In this paper, we introduce our simulation software for EEG signal accuracy improvement. Users can check and train own EEG signal accuracy using our simulation software. Subjects were shown emotional imagination condition with landscape photography and logical imagination condition with a mathematical problem to subject. We use that EEG signal data, and apply Independent Component Analysis algorithm for noise removal. So we can have beta waves(${\beta}$, 14-30Hz) data through Band Pass Filter. We extract feature using Root Mean Square algorithm and That features are classified through Support Vector Machine. The classification result is 78.21% before EEG signal accuracy improvement training. but after successive training, the result is 91.67%. So user can improve own EEG signal accuracy using our simulation software. And we are expecting efficient use of BCI system based EEG signal.

A Study on the Hangul Recognition Using Hough Transform and Subgraph Pattern (Hough Transform과 부분 그래프 패턴을 이용한 한글 인식에 관한 연구)

  • 구하성;박길철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.185-196
    • /
    • 1999
  • In this dissertation, a new off-line recognition system is proposed using a subgraph pattern, neural network. After thinning is applied to input characters, balance having a noise elimination function on location is performed. Then as the first step for recognition procedure, circular elements are extracted and recognized. From the subblock HT, space feature points such as endpoint, flex point, bridge point are extracted and a subgraph pattern is formed observing the relations among them. A region where vowel can exist is allocated and a candidate point of the vowel is extracted. Then, using the subgraph pattern dictionary, a vowel is recognized. A same method is applied to extract horizontal vowels and the vowel is recognized through a simple structural analysis. For verification of recognition subgraph in this paper, experiments are done with the most frequently used Myngjo font, Gothic font for printed characters and handwritten characters. In case of Gothic font, character recognition rate was 98.9%. For Myngjo font characters, the recognition rate was 98.2%. For handwritten characters, the recognition rate was 92.5%. The total recognition rate was 94.8% with mixed handwriting and printing characters for multi-font recognition.

  • PDF

Multimodal Biometrics Recognition from Facial Video with Missing Modalities Using Deep Learning

  • Maity, Sayan;Abdel-Mottaleb, Mohamed;Asfour, Shihab S.
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.6-29
    • /
    • 2020
  • Biometrics identification using multiple modalities has attracted the attention of many researchers as it produces more robust and trustworthy results than single modality biometrics. In this paper, we present a novel multimodal recognition system that trains a deep learning network to automatically learn features after extracting multiple biometric modalities from a single data source, i.e., facial video clips. Utilizing different modalities, i.e., left ear, left profile face, frontal face, right profile face, and right ear, present in the facial video clips, we train supervised denoising auto-encoders to automatically extract robust and non-redundant features. The automatically learned features are then used to train modality specific sparse classifiers to perform the multimodal recognition. Moreover, the proposed technique has proven robust when some of the above modalities were missing during the testing. The proposed system has three main components that are responsible for detection, which consists of modality specific detectors to automatically detect images of different modalities present in facial video clips; feature selection, which uses supervised denoising sparse auto-encoders network to capture discriminative representations that are robust to the illumination and pose variations; and classification, which consists of a set of modality specific sparse representation classifiers for unimodal recognition, followed by score level fusion of the recognition results of the available modalities. Experiments conducted on the constrained facial video dataset (WVU) and the unconstrained facial video dataset (HONDA/UCSD), resulted in a 99.17% and 97.14% Rank-1 recognition rates, respectively. The multimodal recognition accuracy demonstrates the superiority and robustness of the proposed approach irrespective of the illumination, non-planar movement, and pose variations present in the video clips even in the situation of missing modalities.

3D Visualization of Brain MR Images by Applying Image Interpolation Using Proportional Relationship of MBRs (MBR의 비례 관계를 이용한 영상 보간이 적용된 뇌 MR 영상의 3차원 가시화)

  • Song, Mi-Young;Cho, Hyung-Je
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.339-346
    • /
    • 2003
  • In this paper, we propose a new method in which interpolation images are created by using a small number of axiai T2-weighted images instead of using many sectional images for 3D visualization of brain MR images. For image Interpolation, an important part of this process, we first segment a region of interest (ROI) that we wish to apply 3D reconstruction and extract the boundaries of segmented ROIs and MBR information. After the image size of interpolation layer is determined according to the changing rate of MBR size between top slice and bottom slice of segmented ROI, we find the corresponding pixels in segmented ROI images. Then we calculate a pixel's intensity of interpolation image by assigning to each pixel intensity weights detected by cube interpolation method. Finally, 3D reconstruction is accomplished by exploiting feature points and 3D voxels in the created interpolation images.

Technical Trend Analysis of Fingerprint Classification (지문분류 기술 동향 분석)

  • Jung, Hye-Wuk;Lee, Seung
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.132-144
    • /
    • 2017
  • The fingerprint classification of categorizing fingerprints by classes should be used in order to improve the processing speed and accuracy in a fingerprint recognition system using a large database. The fingerprint classification methods extract features from the fingerprint ridges of a fingerprint and classify the fingerprint using learning and reasoning techniques based on the classes defined according to the flow and shape of the fingerprint ridges. In earlier days, many researches have been conducted using NIST database acquired by pressing or rolling finger against a paper. However, as automated systems using live-scan scanners for fingerprint recognition have become popular, researches using fingerprint images obtained by live-scan scanners, such as fingerprint data provided by FVC, are increasing. And these days the methods of fingerprint classification using Deep Learning have proposed. In this paper, we investigate the trends of fingerprint classification technology and compare the classification performance of the technology. We desire to assist fingerprint classification research with increasing large fingerprint database in improving the performance by mentioning the necessity of fingerprint classification research with consideration for fingerprint images based on live-scan scanners and analyzing fingerprint classification using deep learning.

Investigation of Timbre-related Music Feature Learning using Separated Vocal Signals (분리된 보컬을 활용한 음색기반 음악 특성 탐색 연구)

  • Lee, Seungjin
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1024-1034
    • /
    • 2019
  • Preference for music is determined by a variety of factors, and identifying characteristics that reflect specific factors is important for music recommendations. In this paper, we propose a method to extract the singing voice related music features reflecting various musical characteristics by using a model learned for singer identification. The model can be trained using a music source containing a background accompaniment, but it may provide degraded singer identification performance. In order to mitigate this problem, this study performs a preliminary work to separate the background accompaniment, and creates a data set composed of separated vocals by using the proven model structure that appeared in SiSEC, Signal Separation and Evaluation Campaign. Finally, we use the separated vocals to discover the singing voice related music features that reflect the singer's voice. We compare the effects of source separation against existing methods that use music source without source separation.

SIFT Feature Based Digital Watermarking Method for VR Image (VR영상을 위한 SIFT 특징점 기반 디지털 워터마킹 방법)

  • Moon, Won-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1152-1162
    • /
    • 2019
  • With the rapid development of the VR industry, many VR contents are produced and circulated, and the need for copyright protection is increasing. In this paper, we propose a method of embedding and extracting watermarks in consideration of VR production process. In embedding, SIFT is performed by selecting the region where distortion is minimized in VR production, and transformed into frequency domain using DWT and embedded into the QIM method. In extracting process, in order to correct the distortion in the projection process, the top and bottom regions are changed to different projection methods and some middle regions are rotated using 3DoF to extract the watermark. After this processing, extracted watermark has higher accuracy than the conventional watermark method, and the validity of the proposed watermark is shown by showing that the accuracy is maintained even in various attacks.

Design of Regression Model and Pattern Classifier by Using Principal Component Analysis (주성분 분석법을 이용한 회귀다항식 기반 모델 및 패턴 분류기 설계)

  • Roh, Seok-Beom;Lee, Dong-Yoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.594-600
    • /
    • 2017
  • The new design methodology of prediction model and pattern classification, which is based on the dimension reduction algorithm called principal component analysis, is introduced in this paper. Principal component analysis is one of dimension reduction techniques which are used to reduce the dimension of the input space and extract some good features from the original input variables. The extracted input variables are applied to the prediction model and pattern classifier as the input variables. The introduced prediction model and pattern classifier are based on the very simple regression which is the key point of the paper. The structural simplicity of the prediction model and pattern classifier leads to reducing the over-fitting problem. In order to validate the proposed prediction model and pattern classifier, several machine learning data sets are used.

Development of Lane and Vehicle Headway Direction Recognition System for Military Heavy Equipment's Safe Transport - Based on Kalman Filter and Neural Network - (안전한 군용 중장비 수송을 위한 차선 및 차량 진행 방향 인식 시스템 개발 - 칼만 필터와 신경망을 기반으로 -)

  • Choi, Yeong-Yoon;Choi, Kwang-Mo;Moon, Ho-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.139-147
    • /
    • 2007
  • In military transportation, the use of wide trailer for transporting the large and heavy weight equipments such as tank, armoured vehicle, and mobile gunnery is quite common. So, the vulnerability of causing traffic accidents for these wide military trailer to bump or collide with another car in adjacent lane is very high due to its broad width in excess of its own lane's width. Also, the possibility of these strayed accidents can be increased especially by the careless driver. In this paper, the recognition system of lane and vehicle headway direction is developed to detect the possible collision and warn the driver to prevent the fatal accident. In the system development, Kalman filtering is used first to extract the border of driving lane from the video images supplied by the CCD camera attached to the vehicle and the driving lane detection is completed with regression analysis. Next, the vehicle headway direction is recognized by using neural network scheme with the extracted parameters of the detected driving lane feature. The practical experiments for the developed system are also carried out in the real traffic road of Seoul city area and the results show us the more than 90% accuracy in recognizing the driving lane and vehicle headway direction.

A Novel Method for Moving Object Tracking using Covariance Matrix and Riemannian Metric (공분산 행렬과 리만 측도를 이용한 이동물체 추적 방법)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.364-370
    • /
    • 2011
  • This paper propose a novel method for tracking moving object based on covariance matrix and Riemannian Manifolds. With image backgrounds continuously changed, we use the covariance matrices to extract features for tracking nonrigid object undergoing transformation and deformation. The covariance matrix can make fusion of different types of features and has its small dimension, therefore we enable to handle the spatial and statistical properties as well as the component correlation. The proposed method can estimate the position of the moving object by employing the covariance matrix of object region as a feature vector and comparing the candidate regions. Rimannian Geometry is efficiently adapted to object deformation and change of shape and improve the accuracy by using geodesic distance to predict the estimated position with the minimum distance. The experimental results have shown that the proposed method correctly tracked the moving object.