• 제목/요약/키워드: feature enhancement

검색결과 258건 처리시간 0.103초

Evolutionary Design of Morphology-Based Homomorphic Filter for Feature Enhancement of Medical Images

  • Hwang, Hee-Soo;Oh, Jin-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권3호
    • /
    • pp.172-177
    • /
    • 2009
  • In this paper, a new morphology-based homomorphic filtering technique is presented to enhance features in medical images. The homomorphic filtering is performed based on the morphological sub-bands, in which an image is morphologically decomposed. An evolutionary design is carried to find an optimal gain and structuring element of each sub-band. As a search algorithm, Differential Evolution scheme is utilized. Simulations show that the proposed filter improves the contrast of the interest feature in medical images.

Image Feature Detection and Contrast Enhancement Algorithms Based on Statistical Tests

  • Kim, Yeong-Hwa;Nam, Ji-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권2호
    • /
    • pp.385-399
    • /
    • 2007
  • In many image processing applications, a random noise makes some trouble since most video enhancement functions produce visual artifacts if a priori of the noise is incorrect. The basic difficulty is that the noise and the signal are difficult to be distinguished. Typical unsharp masking (UM) enhances the visual appearances of images, but it also amplifies the noise components of the image. Hence, the applications of a UM are limited when noises are presented. This paper proposed statistical algorithms based on parametric and nonparametric tests to adaptively enhance the image feature and the noise combining while applying UM. With the proposed algorithm, it is made possible to enhance the local contrast of an image without amplifying the noise.

  • PDF

A Study on the Performance Enhancement of Radar Target Classification Using the Two-Level Feature Vector Fusion Method

  • Kim, In-Ha;Choi, In-Sik;Chae, Dae-Young
    • Journal of electromagnetic engineering and science
    • /
    • 제18권3호
    • /
    • pp.206-211
    • /
    • 2018
  • In this paper, we proposed a two-level feature vector fusion technique to improve the performance of target classification. The proposed method combines feature vectors of the early-time region and late-time region in the first-level fusion. In the second-level fusion, we combine the monostatic and bistatic features obtained in the first level. The radar cross section (RCS) of the 3D full-scale model is obtained using the electromagnetic analysis tool FEKO, and then, the feature vector of the target is extracted from it. The feature vector based on the waveform structure is used as the feature vector of the early-time region, while the resonance frequency extracted using the evolutionary programming-based CLEAN algorithm is used as the feature vector of the late-time region. The study results show that the two-level fusion method is better than the one-level fusion method.

A New Image Enhancement Algorithm Based on Bidirectional Diffusion

  • Wang, Zhonghua;Huang, Xiaoming;Huang, Faliang
    • Journal of Information Processing Systems
    • /
    • 제16권1호
    • /
    • pp.49-60
    • /
    • 2020
  • To solve the edge ringing or block effect caused by the partial differential diffusion in image enhancement domain, a new image enhancement algorithm based on bidirectional diffusion, which smooths the flat region or isolated noise region and sharpens the edge region in different types of defect images on aviation composites, is presented. Taking the image pixel's neighborhood intensity and spatial characteristics as the attribute descriptor, the presented bidirectional diffusion model adaptively chooses different diffusion criteria in different defect image regions, which are elaborated are as follows. The forward diffusion is adopted to denoise along the pixel's gradient direction and edge direction in the pixel's smoothing area while the backward diffusion is used to sharpen along the pixel's gradient direction and the forward diffusion is used to smooth along the pixel's edge direction in the pixel's edge region. The comparison experiments were implemented in the delamination, inclusion, channel, shrinkage, blowhole and crack defect images, and the comparison results indicate that our algorithm not only preserves the image feature better but also improves the image contrast more obviously.

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권2호
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

SVM과 LDA를 이용한 마커 검출 및 인식의 성능 향상 (Performance Enhancement of Marker Detection and Recognition using SVM and LDA)

  • 강선경;소인미;김영운;이상설;정성태
    • 한국멀티미디어학회논문지
    • /
    • 제10권7호
    • /
    • pp.923-933
    • /
    • 2007
  • 본 논문에서는 SVM(Support Vector Machine)과 LDA(Linear Discriminant Analysis)를 이용하여 사각형 형태 마커 검출 및 인식의 성능을 향상시키는 방법을 제안한다. 본 논문의 방법에서는 사각형 형태의 마커 검출을 위하여 입력 영상을 이진 영상으로 변환하고 객체들의 윤곽선을 추출한 다음에 윤곽선을 선분으로 근사화 한다. 근사화된 선분으로부터 기하학적 특징을 이용하여 사각형을 찾는다. 마커의 사각형 영역을 찾은 다음에는 워핑 기법과 확대/축소 변환을 이용하여 사각형 영상을 정사각형 형태로 정규화한다. 정사각형 형태로 정규화한 다음에는 주성분 분석을 적용하여 특징 벡터의 크기를 줄인 다음에 SVM을 이용하여 마커 영상인지 아닌지를 검사한다. 마커 영상으로 판별된 영상에 대하여 LDA를 적용하여 특징 벡터의 크기를 더 줄이고 표준 마커에 대한 특징 벡터와의 최소 거리법에 의해 마커의 종류를 인식한다. 인식 실험 결과 SVM을 사용함으로써 마커 검출의 오류를 줄일 수 있었고 LDA를 사용함으로써 특징 벡터의 크기는 줄어들고 인식률이 높아짐을 알 수 있었다.

  • PDF

Color-Image Guided Depth Map Super-Resolution Based on Iterative Depth Feature Enhancement

  • Lijun Zhao;Ke Wang;Jinjing, Zhang;Jialong Zhang;Anhong Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2068-2082
    • /
    • 2023
  • With the rapid development of deep learning, Depth Map Super-Resolution (DMSR) method has achieved more advanced performances. However, when the upsampling rate is very large, it is difficult to capture the structural consistency between color features and depth features by these DMSR methods. Therefore, we propose a color-image guided DMSR method based on iterative depth feature enhancement. Considering the feature difference between high-quality color features and low-quality depth features, we propose to decompose the depth features into High-Frequency (HF) and Low-Frequency (LF) components. Due to structural homogeneity of depth HF components and HF color features, only HF color features are used to enhance the depth HF features without using the LF color features. Before the HF and LF depth feature decomposition, the LF component of the previous depth decomposition and the updated HF component are combined together. After decomposing and reorganizing recursively-updated features, we combine all the depth LF features with the final updated depth HF features to obtain the enhanced-depth features. Next, the enhanced-depth features are input into the multistage depth map fusion reconstruction block, in which the cross enhancement module is introduced into the reconstruction block to fully mine the spatial correlation of depth map by interleaving various features between different convolution groups. Experimental results can show that the two objective assessments of root mean square error and mean absolute deviation of the proposed method are superior to those of many latest DMSR methods.

Enhancement of CAD Model Interoperability Based on Feature Ontology

  • Lee Yoonsook;Cheon Sang-Uk;Han Sanghung
    • Journal of Ship and Ocean Technology
    • /
    • 제9권3호
    • /
    • pp.33-42
    • /
    • 2005
  • As the networks connect the world, enterprises tend to move manufacturing activities into virtual spaces. Since different software applications use different data terminology, it becomes a problem to interoperate, interchange, and manage electronic data among heterogeneous systems. It is said that approximately one billion dollar has been being spent yearly in USA for product data exchange and interoperability. As commercial CAD systems have brought in the concept of design feature for the sake of interoperability, terminologies of design features need to be harmonized. In order to define design feature terminology for integration, knowledge about feature definitions of different CAD systems should be considered. STEP standard have attempted to solve this problem, but it defines only syntactic data representation so that semantic data integration is not possible. This paper proposes a methodology for integrating modeling features of CAD systems. We utilize the ontology concept to build a data model of design features which can be a semantic standard of feature definitions of CAD systems. Using feature ontology, we implement an integrated virtual database and a simple system which searches and edits design features in a semantic way.

구조물의 품질 결함 변별력 증대를 위한 수직 에너지 기반의 웨이블릿 Feature 생성 (Structural Quality Defect Discrimination Enhancement using Vertical Energy-based Wavelet Feature Generation)

  • 김준석;정욱
    • 품질경영학회지
    • /
    • 제36권2호
    • /
    • pp.36-44
    • /
    • 2008
  • In this paper a novel feature extraction and selection is carried out in order to improve the discriminating capability between healthy and damaged structure using vibration signals. Although many feature extraction and selection algorithms have been proposed for vibration signals, most proposed approaches don't consider the discriminating ability of features since they are usually in unsupervised manner. We proposed a novel feature extraction and selection algorithm selecting few wavelet coefficients with higher class discriminating capability for damage detection and class visualization. We applied three class separability measures to evaluate the features, i.e. T test statistics, divergence, and Bhattacharyya distance. Experiments with vibration signals from truss structure demonstrate that class separabilities are significantly enhanced using our proposed algorithm compared to other two algorithms with original time-based features and Fourier-based ones.

새로운 독립 요소 해석 방법론에 의한 얼굴 인식 (Face Recognition Using A New Methodology For Independent Component Analysis)

  • 류재흥;고재흥
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.305-309
    • /
    • 2000
  • In this paper, we presents a new methodology for face recognition after analysing conventional ICA(Independent Component Analysis) based approach. In the literature we found that ICA based methods have followed the same procedure without any exception, first PCA(Principal Component Analysis) has been used for feature extraction, next ICA learning method has been applied for feature enhancement in the reduced dimension. However, it is contradiction that features are extracted using higher order moments depend on variance, the second order statistics. It is not considered that a necessary component can be located in the discarded feature space. In the new methodology, features are extracted using the magnitude of kurtosis(4-th order central moment or cumulant). This corresponds to the PCA based feature extraction using eigenvalue(2nd order central moment or variance). The synergy effect of PCA and ICA can be achieved if PCA is used for noise reduction filter. ICA methodology is analysed using SVD(Singular Value Decomposition). PCA does whitening and noise reduction. ICA performs the feature extraction. Simulation results show the effectiveness of the methodology compared to the conventional ICA approach.

  • PDF