• Title/Summary/Keyword: fault isolation

Search Result 259, Processing Time 0.027 seconds

Multiple Faults Detection and Isolation via Decentralized Sliding Mode Observer for Reconfigurable Manipulator

  • Zhao, Bo;Li, Chenghao;Ma, Tianhao;Li, Yuanchun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2393-2405
    • /
    • 2015
  • This paper considers a decentralized multiple faults detection and isolation (FDI) scheme for reconfigurable manipulators. Inspired by their modularization property, a global sliding mode (GSM) based stable adaptive fuzzy decentralized controller is investigated for the system in fault free, while for the system suffering from multiple faults (actuator fault and sensor fault), the decentralized sliding mode observer (DSMO) is employed to detect their occurrence. Hereafter, the time and location of faults can be determined by a fault isolation scheme via a bank of DSMOs. Finally, the effectiveness of the proposed schemes in controlling, detecting and isolating faults is illustrated by the simulations of two 3-DOF reconfigurable manipulators with different configurations successfully.

Optimal In-Plane Configuration of 3-axis MEMS IMUs Considering Fault Detection and Isolation Performance and Lever Arm Effect (레버암 효과와 고장 감지 및 배제 성능을 고려한 여분의 3축 MEMS IMU의 평면 배치 기법)

  • Kim, Eung Ju;Kim, Yong Hun;Choi, Min Jun;Song, Jin Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1648-1656
    • /
    • 2018
  • The configuration of redundant inertial sensors are very important when considering navigation performance and fault detection and isolation (FDI) performance. By constructing a redundant sensor system using multiple inertial sensors, it is possible to improve the navigation performance and fault detection and isolation performance, which are highly related to the sensor configuration and allocation. In order to deploy multiple MEMS inertial measurement units effectively, a configuration and allocation methods considering navigation performance, fault detection and isolation performance, and lever arm effect in one plane are presented, and the performance is analyzed through simulation in this research. From the results, it is confirmed that the proposed configuration and allocation method can improve navigation, FDI, and lever arm effect rejection performances more effectively by more than 70%.

A Study on a Fault Detection and Isolation Method of Nonlinear Systems using SVM and Neural Network (SVM과 신경회로망을 이용한 비선형시스템의 고장감지와 분류방법 연구)

  • Lee, In-Soo;Cho, Jung-Hwan;Seo, Hae-Moon;Nam, Yoon-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.540-545
    • /
    • 2012
  • In this paper, we propose a fault diagnosis method using artificial neural network and SVM (Support Vector Machine) to detect and isolate faults in the nonlinear systems. The proposed algorithm consists of two main parts: fault detection through threshold testing using a artificial neural network and fault isolation by SVM fault classifier. In the proposed method a fault is detected when the errors between the actual system output and the artificial neural network nominal system output cross a predetermined threshold. Once a fault in the nonlinear system is detected the SVM fault classifier isolates the fault. The computer simulation results demonstrate the effectiveness of the proposed SVM and artificial neural network based fault diagnosis method.

Fault diagnosis using multiple PI observers

  • Kim, Hwan-Seong;Ki, Sang-Bong;Kawaji, Shigeyasu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.287-290
    • /
    • 1996
  • Fault diagnosis problem is currently the subject of extensive research and numerous survey paper can be found. Although several works are studied on the fault detection and isolation observers and the residual generators, those are concerned with only the detection of actuator failures or sensor failures. So, the perfect detection and isolation is strongly required for practical applications. In this paper, a, strategy of fault diagnosis using multiple proportional integral (PI) observers including the magnitude of actuator failures is provided. It is shown that actuator failures are detected and isolated perfectly by monitoring the integrated error between actual output and estimated output by a PI observer. Also in presence of complex actuator and sensor failures, these failures are detected and isolated by multiple PI observers.

  • PDF

Fault Detection and Isolation for Inertial Sensor Using Single Antenna GPS Receiver (단일 안테나 GPS 수신기를 이용한 관성센서의 고장검출 및 분리)

  • 김영진;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1037-1043
    • /
    • 2004
  • In this paper, a new fault detection and isolation algorithm fur inertial sensor system is proposed. To identify the inertial sensor fault, single antenna GPS receiver is used as an effective redundancy source. To use GPS receiver as redundancy for the inertial sensors, the algorithm to estimate the attitude and acceleration using single antenna GPS receiver is adopted. By using Doppler shift of carrier phase signal and kinetic characteristics of aircraft, attitude information of aircraft can be obtained at the coordinated flight condition. Based on this idea, fault diagnosis algorithm for inertial sensors using single antenna GPS based attitude is proposed. For more effective FDI, decision variables considering the aircraft maneuver are proposed. The effectiveness of the proposed algorithm is verified through the numerical simulations.

Fault Detection and Isolation Scheme for Inverted Pendulum Control System (역진자 제어계의 고장검출식별 기법)

  • Lee, Sang-Moon;Ryu, Ji-Su;Lee, Kee-Sang;Park, Tae-Geon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2227-2229
    • /
    • 2004
  • Fault Detection and Isolation(FDI) schemes using unknown input functional observers with very low order are presented. These schemes resolve the major practical difficulties with all FDI systems employing multiple observers for residual generation and can be implemented by the use of microprocessors that are normally used in commercial processes mainly due to the simplicity of the residual generation block. Various design objectives including detection, isolation, estimation and compensation of instrument fault/or process fault are achievable with these schemes. The proposed FDI scheme is applied to an inverted pendulum control system for instrument fault detection.

  • PDF

Fault Detection and Isolation of Sytem by using PI observer (비례적분(PI) 관측기를 이용한 시스템의 고장진단)

  • 김환성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.363-367
    • /
    • 1996
  • The robustness issues in fault detection and isolation(FDI) have received considerable attenuation in recent years, due to the increasing demand for safe and reliable operation of uncertain and complex dynamic systems. The aim of this paper is to present the FDI method by using proportional integral(PI) observer and unknown input observer(UIO) under the faults of actuators and sensors. Due to this simple residual generator, the PI observer can easily detect the both faults of actuator and sensor. A simulation results show the effectiveness of this methods.

  • PDF

The Method for detecting leakage current of a electric vehicle (전기 구동 차량의 누설 전류 검출 기법)

  • Park, Hyunseok;Eom, Jeongyong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.139.1-139.1
    • /
    • 2011
  • Electric vehicle use independent electricity of high voltage. if isolation of electricity is destructed, devices and people are considerably damaged. Therefore, detection of ground fault is necessary for electric vehicle. As the existing detection method of ground fault can not detect ground fault when isolation of both positive side and negative side of electricity is destructed, and change of voltage of electricity. This paper proposed detection method for ground fault of both two sides of electricity and change of voltage. The proposed method is verified by analysis of equivalent circuit.

  • PDF

Fault Isolation for a Diesel Engine Actuator (디젤엔진 위치서보시스템을 위한 고장 식별)

  • Park, Tae-Geon;Hur, Hak-Bom;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.417-419
    • /
    • 1998
  • In a large diesel engine actuator position servo system, it is impossible to isolate an actuator fault from a load torque with conventional fault detection isolation (FDI) schemes because they are propagated through a channel. This paper deals with a parity equation based residual generation to isolate them in the system. The actuator fault is modelled by a multiplicative type fault that can be characterized as discrepancies between the nominal and actual plant parameters, whereas the load torque is modelled by an additive disturbance. The transformation implemented in the residual generator should be determined on-line to achieve the isolation. Simulation studies show the practical applicability of the FDI scheme.

  • PDF

Composite Fault Detection and Isolation for Uncertain Systems (불확정 시스템에서의 복합성 이상검출 및 격리)

  • Yu, Ho-Jun;Kim, Dae-U;Gwon, O-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.257-262
    • /
    • 1999
  • This paper proposes a composite fault detection and isolation method by combining the parameter estimation method[1] with the observer-based method[2] to take advantages of both methods. Some properties of the parameter estimation method and the observer-based method are revieved, and the composite algorithm is presented. To exemplify the performance of the method proposed, some simulations applied to remotely piloted vehicle are performed.

  • PDF