• Title/Summary/Keyword: fault estimation

Search Result 393, Processing Time 0.03 seconds

Life-cycle estimation of HVDC full-bridge sub-module considering operational condition and redundancy (HVDC 풀-브리지 서브모듈의 동작 조건과 여유율을 고려한 수명예측)

  • Kang, Feel-soon;Song, Sung-Geun
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1208-1217
    • /
    • 2019
  • The life-cycle prediction of the sub-module which is the unit system of MMC is very important from the viewpoint of maintenance and economic feasibility of HVDC system. However, the life-cycle prediction that considers only the type, number and combination of parts is a generalized result that does not take into account the operating condition of the sub-module, and may significantly differ from the life-cycle of the actual one. Therefore, we design a fault tree for the purpose of reflecting the operation characteristics of the full-bridge sub-module and apply the MIL-HDBK-217F to the failure rate of the basic event to predict the life-cycle of the full-bridge sub-module. It compares the life-cycle expectancy of the conventional failure rate analysis with the proposed fault-tree analysis and compares the lifetime according to whether the redundancy of the full-bridge sub-module is considered.

Surface Geophysical Survey for Delineation of Weathered Zone of Chojeong Area and Investigation of Fault Fracture Zones (초정지역의 풍화대 조사 및 단층파쇄 지역의 불연속면 조사를 위한 지표물리탐사)

  • Kim, Ji-Soo;Han, Soo-Hyung
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.517-523
    • /
    • 2007
  • Geophysical surveys(seismic refraction, electrical resistivity, and ground penetrating radar) were performed to delineate the weathering zone associated with vadose water in Chojeong area and investigate the fault related fracture zones. On the basis of seismic velocity structures, weathering layer for the southwestern part is interpreted to be deeper than for the northeastern part. The depth to bedrock(i.e., thickness of weathered zone) from seismic refraction data attempted to be correlated with drill-core data and groundwater level. As for the investigation of geological discontinuities such as fault related fracture zone, seismic refraction, electrical resistivity, and ground penetrating data are compositely employed in terms of velocity and resistivity structures for mapping of surface boundary of the discontinuities up to shallow depth. Surface boundaries of fracture zone are well indicated in seismic velocity and electrical resistivity structures. Accurate estimation of weathered zone and fracture zone can be successfully available for mapping of attitude of vadose water layer.

GPS Carrier Phase Fault Detection with Consideration on User Dynamics (사용자 다이나믹을 고려한 GPS 반송파 고장검출)

  • Won, Dae Hee;Ahn, Jongsun;Sung, Sangkyung;Lee, Eunsung;Heo, Moon-Beom;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1048-1054
    • /
    • 2012
  • This paper presents a Carrier phase fault detection (FD) method for GPS RTK (Global Positioning System Real Time Kinematic) in dynamic environment. There are various error sources in dynamic environment and these errors decrease the reliability of FD results. Due to the reason, Carrier phase measurements are separated into satellite induced signal, user induced signal and other remaining errors. Especially the user-induced signal is computed by user dynamic which is estimated by time-differenced Carrier phase (TDCP) and Doppler shift. TDCP makes it possible to avoid integer ambiguity resolution. Computer simulation is conducted to verify the suggested method. By applying impulse, step and ramp faults, the FD performance is analyzed.

Estimation of the Deformation Modulus for a Fault Zone using Crown Settlements Measured During Tunnel Excavation (터널 굴착 중 측정된 천단변위를 이용한 단층대의 변형계수 산정)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Song, Gyu-Jin;Seo, Yong-Seok;Kim, Ji-Soo;Woo, Sang-Baik
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.227-235
    • /
    • 2014
  • The deformation modulus is one of the essential factors in determining ground behavior and safety during tunnel excavation. In this study, we conducted a back-analysis using crown settlements measured during tunnel excavation, using a horizontal inclinometer on a fault zone of pegmatite, and calculated the deformation modulus of the fault zone. This deformation modulus calculation was then compared with deformation moduli found through established relationships that use the correlation between RMR and the deformation modulus, as well as the results of pressure-meter tests. The deformation moduli calculated by back-analysis differs significantly from the deformation moduli determined through established relationships, as well as the results from pressure-meter tests conducted across the study area. Furthermore, the maximum crown settlements derived from numerical analysis conducted by applying deformation moduli determined by these established relationships and the pressure-meter tests produced noticeable differences. This result indicates that in the case of a weak rock mass, such as a fault zone, it is inappropriate to estimate the deformation modulus using preexisting relationships, and caution must be taken when considering the geological and geotechnical characteristics of weak rock.

Optimal Release Problems based on a Stochastic Differential Equation Model Under the Distributed Software Development Environments (분산 소프트웨어 개발환경에 대한 확률 미분 방정식 모델을 이용한 최적 배포 문제)

  • Lee Jae-Ki;Nam Sang-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7A
    • /
    • pp.649-658
    • /
    • 2006
  • Recently, Software Development was applied to new-approach methods as a various form : client-server system and web-programing, object-orient concept, distributed development with a network environments. On the other hand, it be concerned about the distributed development technology and increasing of object-oriented methodology. These technology is spread out the software quality and improve of software production, reduction of the software develop working. Futures, we considered about the distributed software development technique with a many workstation. In this paper, we discussed optimal release problem based on a stochastic differential equation model for the distributed Software development environments. In the past, the software reliability applied to quality a rough guess with a software development process and approach by the estimation of reliability for a test progress. But, in this paper, we decided to optimal release times two method: first, SRGM with an error counting model in fault detection phase by NHPP. Second, fault detection is change of continuous random variable by SDE(stochastic differential equation). Here, we decide to optimal release time as a minimum cost form the detected failure data and debugging fault data during the system test phase and operational phase. Especially, we discussed to limitation of reliability considering of total software cost probability distribution.

Software Fault Detection and Removal Effort-based Reliability Estimation Model (소프트웨어 결함 발견 및 제거 노력 기반 신뢰성 추정 모델)

  • Kang, Myung-Muk;Gu, Tae-Wan;Baik, Jong-Moon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.536-547
    • /
    • 2010
  • Relative importance and complexity of recent software is getting increased because the software is needed to provide considerable amount of functions and high performance. Therefore, developing reliable software is importantly issued. In order to develop reliable software, it is necessary to manage software reliability at the early phases, but most reliability estimation models are used at system or operational test phases. In order to develop highly reliable software, it is necessary to manage software reliability at the early test phases based on characteristic of the phases that is developers and testers are not separated and developers perform test and debug activities together. Therefore, a new reliability estimation model considering test and debug time together is necessarily needed. In this paper, we propose a new reliability estimation model to manage reliability of individual units from the early test phases and in order to show how to fit the model to actual data and usefulness, we collected industrial data and used it for the experiment.

Real Time AOA Estimation Using Analog Neural Network Model (아날로그 신경망 모델을 이용한 실시간 도래방향 추정 알고리즘의 개발)

  • Jeong, Jung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.465-469
    • /
    • 2003
  • It has well known that MUSIC and ESPRIT algorithms estimate angle of arrival(AOA) with high resolution by eigenvalue decomposition of the covariance matrix which were obtained from the array antennas, However, the disadvantage of MUSIC and ESPRIT is that they are computationally ineffective, and then they are difficult to implement in real time. the other problem of MUSIC and ESPRIT is to require calibrated antennas with uniform features, and are sensitive ti the manufacturing fault and other physical uncertainties. To overcome these disadvantages, several method using neural model have been study. For multiple signals, those methods require huge training data prior to AOA estimation. This paper proposes the algorithm for AOA estimation by interconnected Hopfield neural model. Computer simulations show the validity of the proposed algorithm. It follows that the proposed method yields better AOA estimates than MUSIC. Moreover, out method does not require huge training procedure and only assigns interconnected coefficients to the neural network prior to AOA estimation.

Precise attitude determination strategy for spacecraft based on information fusion of attitude sensors: Gyros/GPS/Star-sensor

  • Mao, Xinyuan;Du, Xiaojing;Fang, Hui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The rigorous requirements of modern spacecraft missions necessitate a precise attitude determination strategy. This paper mainly researches that, based on three space-borne attitude sensors: 3-axis rate gyros, 3-antenna GPS receiver and star-sensor. To obtain global attitude estimation after an information fusion process, a feedback-involved Federated Kalman Filter (FKF), consisting of two subsystem Kalman filters (Gyros/GPS and Gyros/Star-sensor), is established. In these filters, the state equation is implemented according to the spacecraft's kinematic attitude model, while the residual error models of GPS and star-sensor observed attitude are utilized, to establish two observation equations, respectively. Taking the sensors' different update rates into account, these two subsystem filters are conducted under a variable step size state prediction method. To improve the fault tolerant capacity of the attitude determination system, this paper designs malfunction warning factors, based on the principle of ${\chi}^2$ residual verification. Mathematical simulation indicates that the information fusion strategy overwhelms the disadvantages of each sensor, acquiring global attitude estimation with precision at a 2-arcsecs level. Although a subsystem encounters malfunction, FKF still reaches precise and stable accuracy. In this process, malfunction warning factors advice malfunctions correctly and effectively.

Instantaneous Frequency Estimation of the Gaussian Enveloped Linear Chirp Signal for Localizing the Faults of the Instrumental Cable in Nuclear Power Plant (가우시안 포락선 선형 첩 신호의 순시 주파수 추정을 통한 원전 내 계측 케이블의 고장점 진단 연구)

  • Lee, Chun Ku;Park, Jin Bae;Yoon, Tae Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.987-993
    • /
    • 2013
  • Integrity of the control and instrumental cables in nuclear power plant is important to maintain the stability of the nuclear power plants. In order to diagnose the integrity of the cables, the diagnostic methods based on reflectometry have been studied. The reflectometry is a non-destructive method and it is applicable to diagnose the live cables. We introduce a Gaussian enveloped linear chirp reflectometry to diagnose the cables in the nuclear power plants. In this paper, we estimate the instantaneous frequency of the Gaussian enveloped linear chirp signal by using the weighted robust least squares filtering to localize the impedance discontinuities in the class 1E instrumental cable.

Phasor Estimation Method Eliminating the Effect of the DC offsets (DC 옵셋의 영향을 제거한 페이저 연산 기법)

  • Lee, Dong-Gyu;Kim, Hyung-Kyu;Kwon, Young-Jin;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.203_204
    • /
    • 2009
  • In this paper, we propose a Fourier transform-based modified phasor estimation method to eliminate the adverse influence of exponentially decaying DC offsets. Discrete Fourier Transform (DFT) is generally used to calculate the phasor of the fundamental frequency component in digital protective relays. However, the output of the DFT contains an error due to exponentially decaying DC offsets. Therefore, the decaying DC components should be taken into consideration when calculating the phasor of the fundamental frequency component of a relaying signal. In this paper, the error due to DC offsets in a DFT is calculated and eliminated using the outputs of quaternity DFT, so that the phasor of the fundamental component can be accurately estimated. The performance of the proposed algorithm is evaluated by using computer-simulated signals and EMTP-generated signals. A performance evaluation showed that the proposed algorithm was not affected by system and fault conditions. Thus, the proposed algorithm can effectively suppress the adverse influence of DC offsets in a relaying signal.

  • PDF