• Title/Summary/Keyword: fault diagnostics

Search Result 72, Processing Time 0.025 seconds

Study on Fault Diagnostics Considering Sensor Noise and Bias of Mixed Flow Type 2-Spool Turbofan Engine using Non-Linear Gas Path Analysis Method and Genetic Algorithms (혼합배기가스형 2 스풀 터보팬 엔진의 가스경로 기법과 유전자 알고리즘 이용한 센서 노이즈 및 바이어스를 고려한 고장진단 연구)

  • Kong, Changduk;Kang, Myoungcheol;Park, Gwanglim
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.8-18
    • /
    • 2013
  • Recently, the advanced condition monitoring methods such as the model-based method and the artificial intelligent method have been applied to maximize the availability as well as to minimize the maintenance cost of the aircraft gas turbines. Among them the non-linear GPA(Gas Path Analysis) method and the GA(Genetic Algorithms) have lots of advantages to diagnose the engines compared to other advanced condition monitoring methods such as the linear GPA, fuzzy logic and neural networks. Therefore this work applies both the non-linear GPA and the GA to diagnose AE3007 turbofan engine for an aircraft, and in case of having sensor noise and bias it is confirmed that the GA is better than the GPA through the comparison of two methods.

Trend Monitoring of A Turbofan Engine for Long Endurance UAV Using Fuzzy Logic

  • Kong, Chang-Duk;Ki, Ja-Young;Oh, Seong-Hwan;Kim, Ji-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.64-70
    • /
    • 2008
  • The UAV propulsion system that will be operated for long time at more than 40,000ft altitude should have not only fuel flow minimization but also high reliability and durability. If this UAV propulsion system may have faults, it is not easy to recover the system from the abnormal, and hence an accurate diagnostic technology must be needed to keep the operational reliability. For this purpose, the development of the health monitoring system which can monitor remotely the engine condition should be required. In this study, a fuzzy trend monitoring method for detecting the engine faults including mechanical faults was proposed through analyzing performance trends of measurement data. The trend monitoring is an engine conditioning method which can find engine faults by monitoring important measuring parameters such as fuel flow, exhaust gas temperatures, rotational speeds, vibration and etc. Using engine condition database as an input to be generated by linear regression analysis of real engine instrument data, an application of the fuzzy logic in diagnostics estimated the cause of fault in each component. According to study results. it was confirmed that the proposed trend monitoring method can improve reliability and durability of the propulsion system for a long endurance UAV to be operated at medium altitude.

A Study on Trend Monitoring of a Long Endurance UAV s Gas Turbine to be Operated at Medium High Altitude

  • Kho, Seong-Hee;Ki, Ja-Young;Kong, Chang-Duk;Oh, Seong-Hwan;Kim, Ji-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.84-88
    • /
    • 2008
  • The UAV propulsion system that will be operated for long time at more than 40,000ft altitude should have not only fuel flow minimization but also high reliability and durability. If this UAV propulsion system may have faults, it is not easy to recover the system from the abnormal, and hence an accurate diagnostic technology must be needed to keep the operational reliability. For this purpose, the development of the health monitoring system which can monitor remotely the engine condition should be required. In this study, a fuzzy trend monitoring method for detecting the engine faults including mechanical faults was proposed through analyzing performance trends of measurement data. The trend monitoring is an engine conditioning method which can find engine faults by monitoring important measuring parameters such as fuel flow, exhaust gas temperatures, rotational speeds, vibration and etc. Using engine condition database as an input to be generated by linear regression analysis of real engine instrument data, an application of the fuzzy logic in diagnostics estimated the cause of fault in each component. According to study results, it was confirmed that the proposed trend monitoring method can improve reliability and durability of the propulsion system for a long endurance UAV to be operated at medium altitude.

  • PDF

Approach towards qualification of TCP/IP network components of PFBR

  • Aditya Gour;Tom Mathews;R.P. Behera
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.3975-3984
    • /
    • 2022
  • Distributed control system architecture is adopted for I&C systems of Prototype Fast Breeder Reactor, where the geographically distributed control systems are connected to centralized servers & display stations via switched Ethernet networks. TCP/IP communication plays a significant role in the successful operations of this architecture. The communication tasks at control nodes are taken care by TCP/IP offload modules; local area switched network is realized using layer-2/3 switches, which are finally connected to network interfaces of centralized servers & display stations. Safety, security, reliability, and fault tolerance of control systems used for safety-related applications of nuclear power plants is ensured by indigenous design and qualification as per guidelines laid down by regulatory authorities. In the case of commercially available components, appropriate suitability analysis is required for getting the operation clearances from regulatory authorities. This paper details the proposed approach for the suitability analysis of TCP/IP communication nodes, including control systems at the field, network switches, and servers/display stations. Development of test platform using commercially available tools and diagnostics software engineered for control nodes/display stations are described. Each TCP link behavior with impaired packets and multiple traffic loads is described, followed by benchmarking of the network switch's routing characteristics and security features.

A Study on Fault Classification by EEMD Application of Gear Transmission Error (전달오차의 EEMD적용을 통한 기어 결함분류연구)

  • Park, Sungho;Choi, Joo-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.169-177
    • /
    • 2017
  • In this paper, classification of spall and crack faults of gear teeth is studied by applying the ensemble empirical mode decomposition(EEMD) for the gear transmission error(TE). Finite element models of the gears with the two faults are built, and TE is obtained by simulation of the gears under loaded contact. EEMD is applied to the residuals of the TE which are the difference between the normal and faulty signal. From the result, the difference of spall and crack faults are clearly identified by the intrinsic mode functions(IMF). A simple test bed is installed to illustrate the approach, which consists of motor, brake and a pair of spur gears. Two gears are employed to obtain the TE for the normal, spalled, and cracked gears, and the type of the faults are separated by the same EEMD application process. In order to quantify the results, crest factors are applied to each IMF. Characteristics of spall and crack are well represented by the crest factors of the first and the third IMF, which are used as the feature signals. The classification is carried out using the Bayes decision theory using the feature signals acquired through the experiments.

A Fault Detection Method for Solenoid Valves in Urban Railway Braking Systems Using Temperature-Effect-Compensated Electric Signals (도시철도차량 제동장치의 솔레노이드 밸브에 대한 전류기반 고장진단기법 개발)

  • Seo, Boseong;Lee, Guesuk;Jo, Soo-Ho;Oh, Hyunseok;Youn, Byeng D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.835-842
    • /
    • 2016
  • In Korea, urban railway cars are typically maintained using the strategy of predictive maintenance. In an effort to overcome the limitations of the existing strategy, there is increased interest in adopting the condition-based maintenance strategy. In this study, a novel method is proposed to detect faults in the solenoid valves of the braking system in urban railway vehicles. We determined the key component (i.e., solenoid valve) that leads to braking system faults through the analysis of failure modes, effects, and criticality. Then, an equivalent circuit model was developed with the compensation of the temperature effect on solenoid coils. Finally, we presented how to detect faults with the equivalent circuit model and current signal measurements. To demonstrate the performance of the proposed method, we conducted a case study using real solenoid valves taken from urban railway vehicles. In summary, it was shown that the proposed method can be effective to detect faults in solenoid valves. We anticipate the outcome from this study can help secure the safety and reliability of urban railway vehicles.

Steady-State Performance Simulation and Engine Condition Monitoring for 2-Spool Separate Flow Type Turbofan Engine (2-스풀 분리배기 방식 터보팬 엔진의 성능모사 및 진단에 관한 연구)

  • Gong, Chang Deok;Gang, Myeong Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.60-68
    • /
    • 2003
  • In this study, a steady state performance analysis program was developed for a turbofan engine, and its performance was analyzed at installed conditions. For the purpose of evaluation, the developed program was compared with the performance data provided by the engine manufacturer. It was confirmed that the developed program was reliable because the results by the developed program were well agreed with those by the engine manufacturer within 3.5%. The non-linear GPA(Gas Path Analysis) program for performance diagnostics were developed, and selection of optimal measurement variables was studied. Furthermore, in order to investigate effects of the number and the kind of measurement variables, the non-linear GPA was analyzed with various measurement sets. Finally, the measurement parameters selected in the previous step were applied to the fault detection analysis of the 2-spool separate flow type turbofan engine.

On-line Process Data-driven Diagnostics Using Statistical Techniques (실시간 공정 데이터와 통계적 방법에 기반한 이상진단)

  • Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.40-45
    • /
    • 2018
  • Intelligent monitoring and diagnosis of production processes based on multivariate statistical methods has been one of important tasks for safety and quality issues. This is due to the fact that faults and unexpected events may have serious impacts on the operation of processes. This study proposes a diagnostic scheme based on effective representation of process measurement data and is evaluated using simulation process data. The effects of utilizing a preprocessing step and nonlinear statistical methods are also tested using fifteen faults of the simulation process. Results show that the proposed scheme produced more reliable results and outperformed other tested schemes with none of the filtering step and nonlinear methods. The proposed scheme is expected to be robust to process noises and easy to develop due to the lack of required rigorous mathematical process models or expert knowledge.

Optimal Parameter Selection by Health Monitoring of Gas Turbine Engines using Gas Path Analysis (GPA를 이용한 가스터빈 엔진의 성능진단에 의한 최적 계측변수 선정에 관한 연구)

  • ;Riti Singh
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.24-33
    • /
    • 1999
  • For performance prediction and diagnostics of gas turbine engines, linear and non-linear gas path analysis are applied. In order to find optimal instrument parameters to detect the physical faults such as (outing, erosion and corrosion, non-linear gas path analysis is used. A typical industrial gas turbine engine, TB5000, is used to study the effect of physical faults on engine performance. Through comparison of RMS error between linear and non-linear gas path analysis, the optimal instrument parameters can be defined. As a result, it is found that the linear GPA has the level of error introduced by the assumption of the linear mode: can be of the same order of magnitude as the fault being soughtwhile the non-linear GPA can be solved the non-linear relationships between dependent and independent parameters using an iterative method such as the Newton-Raphson method with sufficient accuracy.

  • PDF

The Novel Configuration of Integrated Network for Building Energy System (빌딩 에너지시스템 통합네트워크 구축에 관한 연구)

  • Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.229-234
    • /
    • 2008
  • The new millennium has started with several innovations driven by fast evolution of the technologies in energy sector. A strong impulse towards the diffusion of new economical efficient technologies regulatory incentives related to energy production from renewable source and a small scale building trigeneration and to promotion of more sustainable environmental-friendly generation solutions, the evolution of electricity markets, more and more binding local emission constraints, and the need for improving the security of supply to reduce the energy system vulnerability. The 24 percentage energy quantify of total energy consumption consumes in commercial buildings and residential houses and the 30% portion of total $CO_2$ emissions covers also in the commercial buildings and residential houses sector. To cope with efficiently this energy sinuation in building sector, Building microgrid or building tooling, heating & power(BCHP) system has been interested in recent day due to meeting thermal and electric energy requirements efficiently and with appropriate energy quality. A multi agent system is a collective of intelligent agents that communicate with each other and work cooperatively to achieve common goals. Also, it is to medicate and coordinate communication between Control Areas and Security Coordinators for teal-time control of the BCHP system and the power pid. In this new circumstance, it is very important to integrate the power and energy delivery system and the information system(communication, networks, and intelligent equipment) that controls it. Therefore, development of smart control modules with open communication protocol and seamlessly interchange the data and information between control network and data network including extranet and intranet give a great meanings. We designed and developed the TCP/IP-CAN IED agent modules and ModBus./LonTalk/(TCP/IP) IED agent ones to configure the multi-agent system based smart energy network of commercial buildings and also intelligent algorithms for inverter fault diagnostics which ran be operated in control level or agent level network.

  • PDF