• 제목/요약/키워드: fault density

Search Result 187, Processing Time 0.037 seconds

The Impact of Delay Optimization on Delay fault Testing Quality

  • Park, Young-Ho;Park, Eun-Sei
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.3
    • /
    • pp.14-21
    • /
    • 1997
  • In delay-optimized designs, timing failures due to manufacturing delay defects are more likely to occur because the average timing slacks of paths decrease and the system becomes more sensitive to smaller delay defect sizes. In this paper, the impact of delay optimized logic circuits on delay fault testing will be discussed and compared to the case for non-optimized designs. First, we provide a timing optimization procedure and show that the resultant density function of path delays is a delta function. Next we also discuss the impact of timing optimization on the yield of a manufacturing process and the defect level for delay faults. Finally, we will give some recommendations on the determination of the system clock time so that the delay-optimized design will have the same manufacturing yield as the non-optimized design and on the determination of delay fault coverage in the delay-optimized design in order to have the same defect-level for delay faults as the non-optimized design, while the system clock time is the same for both designs.

  • PDF

Analysis of Transient State in the Superconducting distribution Cable Systems (초전도 배전 케이블 계통에서의 과도상태 해석)

  • Kim, Nam-Yoel;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.555-557
    • /
    • 2003
  • As electric power transmission systems grow to supply the increasing electric power demand, transmission capacity is larger. but that's really difficult to secure the location for power transmission and distribution to user. The high temperature superconducting(HTS) cable is a method to solve this problem. But for applying to real systems, it needs to investigate the effect of HTS cable. The most important things is the investigation of fault condition. the fault on HTS cable include the quench state. When a fault occur in a circuit, three critical parameters(temperature, current density, magnetic field) exist. when one of these parameters exceeds the critical value, the superconducting becomes normal-conducting. f the cooling power is insufficient to recover the superconducting state, the normal-conducting zone expands. In order to solve these problem, this paper present simulate the quench state considering the over-current and over-voltage in the informal circuit and analyze the quench state.

  • PDF

A Study on Fault Diagnostic Model for Behaviour Appearance of Components (부품의 가동형태에 따른 고장진단 모델 연구)

  • 박주식;하정호;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.4
    • /
    • pp.97-108
    • /
    • 2002
  • This study deals with the application of knowledge-based engineering and a methodology for the assessment & measurement of reliability, availability, maintainability, and safety of industrial systems using fault-tree representation. A fuzzy methodology for fault-tree evaluation seems to be an alternative solution to overcome the drawbacks of the conventional approach. To improve the quality of results, the membership functions must be approximated based on heuristic considerations. Conventionally, it is not always easy to obtain a system reliability for components with different individual failure probability density functions(p.d.f.), We utilize fuzzy set theory to solve the adequacy of the conventional probability in accounting and processing of built-in uncertainties in the probabilistic data. The purpose of this study is to propose the framework of knowledge-based engineering through integrating the various sources of knowledge involved in a FTA.

Resistive Superconducting Fault Current Limiters for Distribution systems using YBCO thin films (YBCO 박막을 이용한 배전급 저항형 초전도 한류기)

  • Lee, B.W.;Park, K.B.;Kang, J.S.;Kim, H.M.;Oh, I.S.;Shim, J.W.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.7 no.2
    • /
    • pp.114-119
    • /
    • 2006
  • High critical current density, high n value, multiple faults endurances, and fast recovery characteristics of YBCO thin films are very attractive characteristics for developing resistive type superconducting fault current limiters. But due to the limited current and voltage ratings of one YBCO module, it is needed to construct series and parallel module connections for high capacity electric networks. Especially for distribution network, more than 30 units should be connected in series to meet voltage level. So in order to construct distribution-level superconducting fault current limiter, simultaneous quench in one YBCO thin films should be realized, and furthermore, quench should be occurred in all fault current limiting units equally to avoid local heating and failures. In this paper, we proposed optimum design of YBCO thin films for fault current limiting module and technical method using shunt resistor to achieve simultaneous quench between multi current limiting units. From the analytical and the experimental results, optimal current path and thickness of shunt material was determined for YBCO thin films and shunt resistor between modules was developed. Finally, 14 kV one phase resistive fault current limiter using multi YBCO thin films was constructed and it was possible to get satisfactory test results.

  • PDF

Signal-based Fault Diagnosis Algorithm of Control Surfaces of Small Fixed-wing Aircraft (소형 고정익기의 신호기반 조종면 고장진단 알고리즘)

  • Kim, Jihwan;Goo, Yunsung;Lee, Hyeongcheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1040-1047
    • /
    • 2012
  • This paper presents a fault diagnosis algorithm of control surfaces of small fixed-wing aircraft to reduce maintenance cost or to improve repair efficiency by estimation of fault occurrence or part replacement periods. The proposed fault diagnosis algorithm consists of ANPSD (Averaged Normalized Power Spectral Density), PCA (Principle Component Analysis), and GC (Geometric Classifier). ANPSD is used for frequency-domain vibration testing. PCA has advantage to extract compressed information from ANPSD. GC has good properties to minimize errors of the fault detection and isolation. The algorithm was verified by the accelerometer measurements of the scaled normal and faulty ailerons and the test results show that the algorithm is suitable for the detection and isolation of the control surface faults. This paper also proposes solutions for some kind of implementation problems.

High Current Density Bi-2223 Tapes in Electrotechnical devices (전력기기에서 고전류밀도 Bi-2223테이프)

  • 류경우;최병주;성기철;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.43-45
    • /
    • 2002
  • High current density Bi-2223 tapes have recently become commercially available. There are some important characteristics of the tapes, e.g. critical current, ac loss, fault current characteristics, for an application such as a power cable or a power transformer. They have been investigated experimentally and discussed in this paper.

  • PDF

Vortex Ring, Shock-Vortex Interaction, and Morphological Transformation Behind a Finite Cone

  • Jang, Seo-Myeong;Jang, Geon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1599-1604
    • /
    • 2001
  • Axisymmetric compressible flow field induced by shock diffraction from a finite cone is investigated with experimental and computational methods. Double-exposure holographic interferograms show ima ges of the density field integrated along the light path. Using the sight-integrated density based on the Able transformation, the axisymmetric computational results are compared qualitatively with the experiment. In the present paper, we observed some distinguishing flow physics: the fault structure of vortex ring, the shock-vortex interaction, and the morphological transformation of shock waves.

  • PDF

Magnetic Core Reactor for DC Reactor type Three-Phase Fault Current Limiter

  • Kim, Jin-Sa;Bae, Duck-Kweon
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.7-11
    • /
    • 2008
  • In this paper, a Magnetic Core Reactor (MCR) which forms a part of the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been developed. This SFCL is more economical than other types with three coils since it uses only one high-Tc superconducting (HTS) coil. When DC reactor type three-phase high-Tc SFCL is developed using just one coil, fewer power electronic devices and shorter HTS wire are needed. The SFCL proposed in this paper needs a power-linking device to connect the SFCL to the power system. The design concept for this device was sprang from the fact that the magnetic energy could be changed into the electrical energy and vice versa. Ferromagnetic material is used as a path of magnetic flux. When high-Tc superconducting DC reactor is separated from the power system by using SCRs, this device also limits fault current until the circuit breaker is opened. The device mentioned above was named Magnetic Core Reactor (MCR). MCR was designed to minimize the voltage drop and total losses. Majority of the design parameters was tuned through experiments with the design prototype. In the experiment, the current density of winding conductor was found to be $1.3\;A/mm^2$, voltage drop across MCR was 20 V and total losses on normal state was 1.3 kW.

A Study on Unidirectionally Solidified Ni-base Eutectic Composites (일방향응고(一方向凝固)시킨 Ni기(基) 초내열(超耐熱) 공정복합재료(共晶複合材料)에 관(關)한 연구(硏究))

  • Lee, Joo-Hong;Hong, Yeong-Hwan;Hong, Jong-Hwi
    • Journal of Korea Foundry Society
    • /
    • v.8 no.4
    • /
    • pp.437-445
    • /
    • 1988
  • The effect of interlamellar spacing on microstructural stability at high temperature was studied for unidirectionally solidified ternary $Ni\;/\;Ni_3Al-Ni_3$ Nb and binary $Ni-Ni_3Nb$ eutectic composite. The interlamellar spacing of both alloy systems were varied with the growth rate according to $"{\lambda}^2R=constant"$ relationship. As a result of isothermal heat treatments at high temperature it was considered that coarsening of lamellar structure was due to concentration gradient between the tip with a relatively small radius of curvature and the side of the thick lamellae with a larger radius of the opposite sign. Fault density was increased as the interlamellar spacing decreased. Therefore it is also considered that the higher coarsening rate of the specimen with the smaller interlamellar spacing was due to higher fault density. And the diference of coarsening rate between $Ni\;/\;Ni_3Al-Ni_3Nb$ and $Ni-Ni_3Nb$ eutectic composites was not observed when the interlamellar spacing was similar in size. This means that the presence of ${\gamma}'$ in ${\gamma}\;/\;{\gamma}'\;-{\delta}$ eutectic had no b arrier effect to diffusion through the ${\gamma}$ matrix.

  • PDF

Electromagnetic characteristics of superconducting fault current limiters under the quenching (박막형 초전도 한류기의 퀜치상태의 전자기 특성)

  • Choi, H.S.;Chung, H.S.;Choi, C.J.;Lee, S.I.;Chung, S.B.;Oh, K.G.;Lim, S.H.;Han, B.S.;Chung, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.415-417
    • /
    • 2003
  • we analyzed the electromagnetic behavior of a superconducting fault current limiter (SFCL) under the quench state using FEM. The analysis model used in this work is 5.5 KVA meander-line type SFCLs. Meshes of 3,650 triangular elements were used in the analysis of this SFCL. Analysis results showed that the distribution of current density was concentrated to inner curved line in meander-line type-SFCL and the maximum current density was 14.61 $A/m^2$ and also the maximum Joule heat was 2,030 $W/m^2$ in this region. We think that the new and the modified structure must be considered for an uniform distribution of the electromagnetic field.

  • PDF