• Title/Summary/Keyword: fault current condition

Search Result 249, Processing Time 0.022 seconds

Fault Current Limiting and Magnetizing Characteristics of the Autotransformer Type SFCL

  • Park, Min Ki;Lim, Sung Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.159-162
    • /
    • 2017
  • In designing the autotransformer type superconducting fault-current limiter (SFCL), one must consider that the iron core can be saturated for the SFCL to have effective fault-current limiting operation. In this paper, to examine the saturation of the iron core comprising SFCL during the fault period, the linkage flux and the magnetizing current of the SFCL were derived from the electrical equivalent circuit with the nonlinear exciting branch. By analysis on the linkage flux versus the magnetizing current of the autotransformer type SFCL, calculated from the short-circuit tests, the design condition for the suppression of the iron core's saturation was discussed.

Study on Selection of HTS Wire for Fabrication of Fault Current-limiting Type HTS Cables (사고전류 제한형 초전도케이블 제작을 위한 초전도 선재 선정에 관한 연구)

  • Heo, Soung-Ouk;Kim, Tae-Min;Han, Byung-Sung;Du, Ho-Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.904-908
    • /
    • 2013
  • When an abnormal condition occurs due to a fault current at a consumer location where electricity is supplied through a high-capacity and high-$T_c$ superconducting(HTS) cable, the HTS cable would be damaged if there is no appropriate measure to protect it. Therefore, appropriate measures are needed to protect HTS cables. The fault-current-limiting HTS cable that was suggested in this study performs an ideal transport current function in normal operations and plays a role in limiting a fault current in abnormal operation (i.e., when a fault current is applied). It has a structure that facilitated its self-current-limiting ability through device change and reconfiguration in the existing HTS cable without extra switching equipment. To complete this structure, it is essential to investigate about the selection of the superconducting wire. Therefore, in this paper, HTS wire using two types of different stabilization layer is compared and examined the stability and current limiting properties under the existence of a fault current.

Characteristics on the Transformer-Type SFCL According to Reclosing Operation the Voltage Increase (전압증가 시 재폐로 동작에 따른 변압기형 초전도 한류기의 특성 분석)

  • Choi, Soo-Geun;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.477-480
    • /
    • 2010
  • Fault current in power system is expected to increase by demand of power capacity. Therefore, when the fault occurred, fault current was increased in the power system. Many studies have been progressed to limit the fault current. Superconducting fault current limiter (SFCL) is one of them which has been studied in worldwide. In this paper, we will analyze characteristics of a transformer-type SFCL by reclosing operation when the voltage increases. Twice opening times in the reclosing of circuit breaker were set as the 0.5 and 15 seconds, respectively. Turn's number of primary and secondary coils set 4:2 and we increased voltages from 120V to 280V for each experiment. By the current waveform, maximum fault current in second and third cycles was lowered when the voltage was increased. In the recovery waveform, recovery time was increased as the voltage was increased. The reason was that power burden of the SFCL increased when consumption power was increased, so the time to get back to SFCL took longer. We compared the characteristics of a resistive-type and transformer-type SFCL. As a result, we found that the fault current of a transformer-type was lower than resistive-type and recovery time of the SFCL was shorter. Consequently, transformer-type SFCL was more profitable for limitation of fault current and recovery time under the same condition for reclosing operation.

A Study on the Transient Characteristics in 765kV Untransposed Transmission Systems (765kV 비연가 송전계통 과도 특성에 관한 고찰)

  • 안용진;강상희
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.7
    • /
    • pp.397-404
    • /
    • 2004
  • This paper describes a study of transient characteristics in 765kV untransposed transmission lines. As the 765(kV) system can carry bulk power, some severe fault on the system nay cause large system disturbance. The large shunt capacitance and small resistance of 765kv transmission line make various difficulties for its protection. These problems including current difference between sending and receiving terminals on normal power flow, low order harmonic current component in fault current and current transformer saturation due to the long DC time constant of the circuit etc. must be investigated and solved. The analysis of transient characteristics at sending terminal has been carried out for the single phase to ground fault and 3-phase short fault, etc. The load current, charging current in normal condition and line flows, fault current, THD(Total Harmonic Distortion) of harmonics, time constants have been analysed for the 765kV untransposed transmission line systems.

Technology of Fuel cell stack fault detection by THDA (전고조파 왜율 분석을 통한 연료전지 스택 고장진단 기술)

  • Kim, UckSoo;Park, HyunSeok;Kang, SunDoo;Eom, JeongYong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.90.1-90.1
    • /
    • 2011
  • This technology is applicable to Electrical vehicle that using Energy from Hydrogen Fueled Cell. Electricity & water is got from chemical reaction between H2 & O2 in stack. This technology is used when fault diagnosis of Fuel cell is needed. It is General method that measure each cell's voltage of stack for fault diagnosis. but, this technology is method of measuring entire voltage of stack. For this reason, fault diagnosis system is simplified and cost of system is lower than previous one. In normal stack condition, characteristic graph of voltage-current has linearity. In fault stack condition, it has non-linearity. we use this characteristic to diagnosis of stack fault. In this technology, Specific frequency current is injected into stack & Stack voltage is measured in response. After that, stack voltage difference is analyzed to diagnosis of stack fault. Presently, Development of current injection module & basic program of THDA is finished. in future we will develop the technology of precise measurement technology about entire stack voltage.

  • PDF

Analysis of Ignition Time/Current Characteristics and Energy when Series Arc-Fault Occurs at Rated 220 V (220 V 직렬 아크고장발생 시 점화 시간/전류 특성 및 에너지 분석)

  • Ko, Won-Sik;Moon, Won-Sik;Bang, Sun-Bae;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1184-1191
    • /
    • 2013
  • Probability of ignition due to arc-fault and energy of the arc-fault for the case of applying serial arc-fault interruption time of 120 V defined in UL 1699 to the voltage of 220 V of domestic condition and also for the case of applying it to the HIV wire type are analyzed. It has been confirmed that when the arc-fault occurs under 5 A, 10 A, and 20 A. Probability of ignition for the three different current conditions is 0.74(74%), 0.48(48%), and 0.32(32%) respectively for respective interruption time within 1 sec, 0.4 sec, and 0.2 sec. We discover that when we apply the same arc interruption time for 120 V defined in UL 1699 to the domestic environment of 220 V. The probability of ignition increases from 1.5% for 120 V condition to as much as 74% for 220 V condition. Conclusively, if we apply the standard for the serial arc-fault interruption time defined in UL 1699 for 120 V to the domestic condition of 220 V, the fire prevention effect of electric fire due to arc-fault equal to that of UL standard of 120 V can not be achieved.

New Ground Fault Protective Relay in DC Traction Power System (비접지 DC 급전계통에서 전류형 지락보호계전기의 사용)

  • Chung S.G.;Baek N.W.;Kim Y.S.;Lee S.H.;Lee H.M.
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1297-1302
    • /
    • 2004
  • In DC power distribution system for urban rail transits potential relay, 64P, is used to detect the ground faults. The problem with this 64P is that though it detects the ground fault it cannot identify the faulted region. Therefore the faulted region cannot be isolated properly. It could results in power loss of the trains on the healthy regions and the safety of the passengers in the trains could be affected adversely. A new ground fault protective relaying scheme that can identify the faulted region is presented in this paper. The new concept uses the current differential scheme and the permissive scheme to identify the faulted region correctly. A device with similar characteristic to the arrestor is adapted to use the current relay for the ground fault detection. The role of the device is to block the ground leakage current in normal operating condition and enable the ground fault current to flow in ground fault condition. The algorithm of the new relay and the effect of the newly adapted device in the new relaying scheme are discussed.

  • PDF

Fault Current Limitation Characteristics of the Bi-2212 Bulk Coil for Distribution-class Superconducting Fault Current Limiters (배전급 초전도 한류기 개발을 위한 Bi-2212 초전도 한류소자의 사고전류 제한 특성)

  • Sim, Jung-Wook;Lee, Hai-Gun;Yim, Sung-Woo;Kim, Hye-Rim;Hyun, Ok-Bae;Park, Kwon-Bae;Lee, Bang-Wook;Oh, Il-Sung;Kim, Ho-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.277-281
    • /
    • 2007
  • We investigated fault current limitation characteristics of the resistive superconducting fault current limiter (SFCL) which consisted of a Bi-2212 bulk coil and a shunt coil. The Bi-2212 bulk coil and the shunt coil were connected in parallel. The Bi-2212 bulk coil was placed inside the shunt coil to induce field-assisted quench. The fault test was conducted at an input voltage of $200V_{rms}$ and fault current of $12kA_{rms}\;and\;25kA_{rms}$. The fault conditions were asymmetric and symmetric, and the fault period was 5 cycles. The test results show that the SFCL successfully limited the fault current of $12kA_{rms}\;and\;25kA_{rms}$ to below $5.5{\sim}6.9kA_{peak}\;within\;0.64{\sim}2.17$ msec after the fault occurred. Limitation was faster under symmetric fault test condition due to the larger change rate of current. We concluded that the speed of fault current limitation was determined by the speed of current rise rather than the amplitude of a short circuit current. These results show that the Bi-2212 bulk coil is suitable for distribution-class SFCLS.

Investigation on the inductive and resistive fault current limiting HTS power cable

  • Lee, Sangyoon;Choi, Jongho;Kim, Dongmin;Kwon, Yonghyun;Kim, Seokho;Sim, Kideok;Cho, Jeonwook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.59-63
    • /
    • 2014
  • HTS power cable bypass the fault current through the former to protect superconducting tapes. On the other hand, the fault current limiting (FCL) power cable can be considered to mitigate the fault current using its increased inductance and resistance. Using the increased resistance of the cable is similar to the conventional resistive fault current limiter. In case of HTS power cable, the magnetic field of HTS power cable is mostly shielded by the induced current on the shield layer during normal operation. However, quench occurs at the shield layer and its current is kept below its critical current at the fault condition. Consequently, the magnetic field starts to spread out and it generates additional inductive impedance of the cable. The inductive impedance can be enhanced more by installing materials of high magnetic susceptibility around the HTS power cable. It is a concept of SFCL power cable. In this paper, a sample SFCL power cable is suggested and experimental results are presented to investigate the effect of iron cover on the impedance generation. The tests results are analyzed to verify the generation of the inductive and resistive impedance. The analysis results suggest the possible applications of the SFCL power cable to reduce the fault current in a real grid.

Analysis on Fault Current Limiting Characteristics According to Peak Current Limiting Setting of a Flux-Lock Type SFCL with Peak Current Limiting Function (피크전류제한 설정에 따른 피크전류제한 기능을 갖는 자속구속형 초전도한류기의 고장전류제한 특성 분석)

  • Ko, Seok-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.68-73
    • /
    • 2012
  • In this paper, the fault current limiting characteristics of a flux-lock type superconducting fault current limiter (SFCL) with peak current limiting function were analyzed through its short-circuit tests. The setting condition for the peak current limiting operation was derived from its electrical equivalent circuit, which was dependent on the inductance ratio between the third coil and the first coil. Through the analysis on the short-circuit tests for the flux-lock type SFCLs with the different inductance ratio between the third coil and the first coil, the setting value for the peak current limiting operation of the flux-lock type SFCL with peak current limiting function could be confirmed to be adjusted with the variation of the inductance ratio between the third coil and the first coil.