• Title/Summary/Keyword: fatty acid binding protein

Search Result 249, Processing Time 0.036 seconds

SREBP-1c Ablation Protects Against ER Stress-induced Hepatic Steatosis by Preventing Impaired Fatty Acid Oxidation (지방산 산화 장애 제어를 통한 SREBP-1c 결핍의 소포체 스트레스 유발 비알콜성지방간 보호작용)

  • Lee, Young-Seung;Osborne, Timothy F.;Seo, Young-Kyo;Jeon, Tae-Il
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.796-805
    • /
    • 2021
  • Hepatic endoplasmic reticulum (ER) stress contributes to the development of steatosis and insulin resistance. The components of unfolded protein response (UPR) regulate lipid metabolism. Recent studies have reported an association between ER stress and aberrant cellular lipid control; moreover, research has confirmed the involvement of sterol regulatory element-binding proteins (SREBPs)-the central regulators of lipid metabolism-in the process. However, the exact role of SREBPs in controlling lipid metabolism during ER stress and its contribution to fatty liver disease remain unknown. Here, we show that SREBP-1c deficiency protects against ER stress-induced hepatic steatosis in mice by regulating UPR, inflammation, and fatty acid oxidation. SREBP-1c directly regulated inositol-requiring kinase 1α (IRE1α) expression and mediated ER stress-induced tumor necrosis factor-α activation, leading to a reduction in expression of peroxisome proliferator-activated receptor γ coactivator 1-α and subsequent impairment of fatty acid oxidation. However, the genetic ablation of SREBP-1c prevented these events, alleviating hepatic inflammation and steatosis. Although the mechanism by which SREBP-1c deficiency prevents ER stress-induced inflammatory signaling remains to be elucidated, alteration of the IRE1α signal in SREBP-1c-depleted Kupffer cells might be involved in the signaling. Overall, the results suggest that SREBP-1c plays a crucial role in the regulation of UPR and inflammation in ER stress-induced hepatic steatosis.

Homology Modeling and Docking Study of β-Ketoacyl Acyl Carrier Protein Synthase Ⅲ from Enterococcus Faecalis

  • Jeong, Ki-Woong;Lee, Jee-Young;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1335-1340
    • /
    • 2007
  • β-Ketoacyl acyl carrier protein synthase (KAS) III is a particularly attractive target in the type II fatty acid synthetic pathway, since it is central to the initiation of fatty acid synthesis. Enterococcus faecalis, a Grampositive bacterium, is one of the major causes of hospital acquired infections. The rise of multidrug-resistant of most bacteria requires the development of new antibiotics, such as inhibition of the KAS III. In order to block the fatty acid synthesis by inhibition of KAS III, at first, three dimensional structure of Enterococcus faecalis KAS III (efKAS III) was determined by comparative homology modeling using MODELLER based on x-ray structure of Staphylococcus aureus KAS III (saKAS III) which is a gram-positive bacteria and is 36.1% identical in amino acid sequences with efKAS III. Since His-Asn-Cys catalytic triad is conserved in efKAS III and saKAS III, substrate specificity of efKAS III and saKAS III and the size of primer binding pocket of these two proteins are expected to be similar. Ligand docking study of efKAS III with naringenin and apigenin showed that naringenin docked more strongly with efKAS III than apigenin, resulting in the intensive hydrogen bond network between naringenin and efKAS III. Also, only naringenin showed antibacterial activity against E. faecalis at 256 μg/mL. This study may give practical implications of flavonoids for antimicrobial effects against E. faecalis.

Cytokine-like Activity of Liver Type Fatty Acid Binding Protein (L-FABP) Inducing Inflammatory Cytokine Interleukin-6

  • Hyunwoo Kim;Gaae Gil;Siyoung Lee;Areum Kwak;Seunghyun Jo;Ensom Kim;Tam T. Nguyen;Sinae Kim;Hyunjhung Jhun;Somi Kim;Miyeon Kim;Youngmin Lee;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.16 no.5
    • /
    • pp.296-304
    • /
    • 2016
  • It has been reported that fatty acid binding proteins (FABPs) do not act only as intracellular mediators of lipid responses but also have extracellular functions. This study aimed to investigate whether extracellular liver type (L)-FABP has a biological activity and to determined serum L-FABP levels in patients with end-stage renal disease (ESRD). We isolated L-FABP complementary deoxyribonucleic acid (cDNA) from the Huh7 human hepatocarcinoma cell line and expressed the recombinant L-FABP protein in Escherichia coli. A549 lung carcinoma and THP-1 monocytic cells were stimulated with the human recombinant L-FABP. Human whole blood cells were also treated with the human recombinant L-FABP or interleukin (IL)-1α. IL-6 levels were measured in cell culture supernatants using IL-6 enzyme-linked immunosorbent assay (ELISA). Human recombinant L-FABP induced IL-6 in a dose-dependent manner in A549, THP-1 cells, and whole blood cells. The blood samples of healthy volunteers and patients with ESRD were taken after an overnight fast. The serum levels of L-FABP in healthy volunteers and ESRD patients were quantified with L-FABP ELISA. The values of L-FABP in patients with ESRD were significantly lower than those in the control group. Our results demonstrated the biological activity of L-FABP in human cells suggesting L-FABP can be a mediator of inflammation.

Anti-Obesity Effect of Schizandrae Fructus Water Extract through Regulation of AMPK/Sirt1/PGC-1α signaling pathway (AMPK/Sirt1/PGC-1α 신호 전달 경로의 조절을 통한 오미자 추출물의 비만 개선 효과)

  • Lee, Se Hui;Park, Hae-Jin;Shin, Mi-Rae;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.37 no.2
    • /
    • pp.1-11
    • /
    • 2022
  • Objectives : Although the anti-obesity effect of Schizandrae Fructus water extract has been demonstrated, its underlying mechanism is still unclear. Therefore, we aimed to evaluate the anti-obesity effect of Schizandrae Fructus water extract through the p-AMP-activated protein kinase (p-AMPK), sirtuin1 (Sirt1), and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling in 60% high-fat diet (HFD)-induced obese mouse model. Methods : Male C57BL/6 mice were divided into four groups. The Normal group was fed a normal diet and the obese groups were fed 60% HFD. Except for the Control group, the GG group was supplemented with 0.5% Garcinia gummigutta and the SCW group was supplemented with 0.5% Schizandrae Fructus water extract. After 6 weeks, obesity-related biomarkers in serum were measured and the expressions of protein for lipid-related factors in liver tissue were analyzed by western blot. Results : Treatment with SCW significantly down-regulated body weight compared to the Control group. SCW down-regulated levels of triglyceride and total cholesterol in serum and significantly increased p-AMPK, Sirt1, and PGC-1α in liver tissue. In addition, the expressions of fatty acid oxidation-related proteins such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1A (CPT-1A), uncoupling protein 1 (UCP1), and uncoupling protein 3 (UCP3) were significantly up-regulated. However, fatty acid synthesis-related proteins including sterol regulatory element-binding protein-1 (SREBP-1), phospho-Acetyl-CoA Carboxylase (p-ACC), and fatty acid synthase (FAS) were significantly down-regulated. Conclusions : Taken together, SCW treatment showed anti-obesity effect by regulating both fatty acid oxidation-related and fatty acid synthesis-related proteins through AMPK/Sirt1/PGC-1α signaling in 60% HFD-induced obese mice.

Expression of Folate Receptor Protein in CHO Cell Line

  • Kim, Chong-Ho;Park, Seung-Taeck
    • Biomedical Science Letters
    • /
    • v.14 no.4
    • /
    • pp.203-210
    • /
    • 2008
  • One of cell surface receptor proteins, human folate receptor (hFR) involves in the uptake of folates through cell membrane into cytoplasm, and is anchored to the plasma membrane by a fatty acid linkage, which has been identified in some cells as a glycosylphosphatidylinositol (GPI)-tailed protein with a molecular mass of about 40 kDa. The hFR is released by phosphatidylinositol phospholipase C (PI-PLC) because it contains fatty acids and inositol on the GPI tail. Caveolin decorates the cytoplasmic surface of caveolae and has been proposed to have a structural role in maintaining caveolae. It is unknown whether caveolin is involved in targeting, and is necessary for the function of GPI-tailed proteins. To compare the ability of folic acid binding, internalization and expression of hFR, and the effect of caveolin at the both apical and basolateral side of cell surfaces in Chinese hamster ovary (CHO) clone cells overexpressed the hFR and/or caveolin. Our present results suggest a possibility that the overexpression of caveolin does not be involved in expression of hFR, but plays a role as a factor in PI-PLC releasing kinetics, and for a regulation of formation, processing and function of hFR in CHO clone cells overexpressed cavcolin.

  • PDF

Assessment of Adipocyte Differentiation and Maturation-related Gene Expression in the Epididymal Fat of Estrogen Receptor α Knockout (ERαKO) Mouse during Postnatal Development Period

  • Cheon, Yong-Pil;Ko, CheMyong;Lee, Ki-Ho
    • Development and Reproduction
    • /
    • v.24 no.4
    • /
    • pp.287-296
    • /
    • 2020
  • The absence of functional estrogen receptor α (Esr1) results in an overgrowth of the epididymal fat, as observed in estrogen receptor α knockout (ERαKO) mouse. The present research was aimed to evaluate expression of various molecules associated with adipocyte differentiation and maturation in the epididymal fat of ERαKO mouse at several postnatal ages by using quantitative real-time polymerase chain reaction. The highest transcript levels of all molecules were detected at 12 months of postnatal age, except leptin which the mRNA level was increased at 5 months of age and was unchanged until 12 months of age. The expression levels of CCAAT enhancer binding protein (Cebp) alpha, androgen receptor, and lipoprotein lipase were decreased at 5 months of age but increased at about 8 months of age. The mRNA levels of Cebp gamma and sterol regulatory element binding transcription factor 1 remained steady until 8 months of age. Continuous increases of transcript levels during postnatal period were found in Cebp beta, estrogen receptor (ER) beta, fatty acid binding protein 4, and delta like non-canonical Notch ligand 1. The increases of peroxisome proliferator-activated receptor gamma and adiponectin mRNA levels were detected as early as 8 months of age. The levels of fatty acid synthase and resistin transcript at 5 and 8 months of age were lower than that at 2 months of age. These findings show the aberrant expression patterns of genes related to adipocyte differentiation and maturation in the postnatal epididymal fat pad by the disruption of ER alpha function.

Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken

  • Ruonan, Chen;Kai, Liao;Herong, Liao;Li, Zhang;Haixuan, Zhao;Jie, Sun
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.175-190
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. Methods: Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. Results: lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). Conclusion: This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.

Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR) Signaling in the Longissimus dorsi of Hanwoo (Korean Cattle)

  • Lim, Dajeong;Chai, Han-Ha;Lee, Seung-Hwan;Cho, Yong-Min;Choi, Jung-Woo;Kim, Nam-Kuk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1075-1083
    • /
    • 2015
  • Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling), is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle). Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG), phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3), carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL), acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05). Analysis of the gene co-expression network based on Pearson's correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight into the biological mechanisms that determine adipose deposition within muscle.

Study on the fatty acid profile of phospholipid and neutral lipid in Hanwoo beef and their relationship to genetic variation

  • Beak, Seok-Hyeon;Lee, Yoonseok;Lee, Eun Bi;Kim, Kyoung Hoon;Kim, Jong Geun;Bok, Jin Duck;Kang, Sang-Kee
    • Journal of Animal Science and Technology
    • /
    • v.61 no.2
    • /
    • pp.69-76
    • /
    • 2019
  • Maize which has very high omega-6 fatty acid content has been used as a main feed grain for Hanwoo beef production to increase marbling, and thus omega-6 to omega-3 fatty acids ratio in Hanwoo beef is expected to be biased. To elucidate the current status of omega fatty acids ratio in Hanwoo beef, fatty acid profiles of neutral lipid and phospholipid fraction were analyzed separately using 55 Hanwoo steers' longissimus dorsi muscle slaughtered at Pyeongchang, Korea from Oct. to Nov. 2015. In addition, an association study was conducted to evaluate associations between single nucleotide polymorphism (SNP) markers from references and omega fatty acid profiles in phospholipid of Hanwoo beef samples using analysis of variance (ANOVA). In neutral lipid fraction, composition of saturated and monounsaturated fatty acids was higher and polyunsaturated fatty acids was lower compared to those in phospholipid fraction. The mean n-6/n-3 ratios of Hanwoo were $56.059{\pm}16.180$ and $26.811{\pm}6.668$ in phospholipid and neutral lipid, respectively. There were three SNPs showing statistically significant associations with omega fatty acid content. GA type of rs41919985 in fatty acid synthase (FASN) was significantly associated with the highest amount of C20:5 n-3 (p = 0.031). CC type of rs41729173 in fatty acid-binding protein 4 (FABP4) was significantly associated with the lowest amount of C22:2n-6 (p = 0.047). AG type of rs42187261 in FADS1 was significantly linked to the lowest concentration of C20:4 n-6 (p = 0.044). The total n-6/n-3 ratio of the steer which has all four SNP types in above loci (27.905) was much lower than the mean value of the total n-6/n-3 ratio in phospholipid of the 55 Hanwoo steers ($56.059{\pm}16.180$). It was found that phospholipid and neutral lipid of Hanwoo have very high n-6/n-3 ratios compared to the reported data from different cow breeds. Four SNPs in genes related with fatty acid metabolism showed significant associations with the fatty acid profile of phospholipid and may have potential as SNP markers to select Hanwoo steers in terms of n-6/n-3 balance in the future.

Probiotics Increase Intramuscular Fat and Improve the Composition of Fatty Acids in Sunit Sheep through the Adenosine 5'-Monophosphate-Activated Protein Kinase (AMPK) Signaling Pathway

  • Yue Zhang;Duo Yao;Huan Huang;Min Zhang;Lina Sun;Lin Su;LiHua Zhao;Yueying Guo;Ye Jin
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.805-825
    • /
    • 2023
  • This experiment aims to investigate the impact of probiotic feed on growth performance, carcass traits, plasma lipid biochemical parameters, intramuscular fat and triglyceride content, fatty acid composition, mRNA expression levels of genes related to lipid metabolism, and the activity of the enzyme in Sunit sheep. In this experiment, 12 of 96 randomly selected Sunit sheep were assigned to receive the basic diet or the basic diet supplemented with probiotics. The results showed that supplementation with probiotics significantly increased the loin eye area, and decreased plasma triglycerides and free fatty acids, increasing the content of intramuscular fat and triglycerides in the muscle and improving the composition of the fatty acids. The inclusion of probiotics in the diet reduced the expression of adenosine 5'-monophosphate-activated protein kinase alpha 2 (AMPKα2) mRNA and carnitine palmitoyltransferase 1B (CPT1B) mRNA, while increasing the expression of acetyl-CoA carboxylase alpha (ACCα) mRNA, sterol regulatory element-binding protein-1c (SREBP-1c) mRNA, fatty acid synthase mRNA, and stearoyl-CoA desaturase 1 mRNA. The results of this study indicate that supplementation with probiotics can regulate fat deposition and improves the composition of fatty acids in Sunit sheep through the signaling pathways AMPK-ACC-CPT1B and AMPK-SREBP-1c. This regulatory mechanism leads to an increase in intramuscular fat content, a restructuring of muscle composition of the fatty acids, and an enhancement of the nutritional value of meat. These findings contribute to a better understanding of the food science of animal resources and provide valuable references for the production of meat of higher nutritional value.