• Title/Summary/Keyword: fatigue properties

검색결과 1,125건 처리시간 0.033초

고강도 소재의 인장과 저주기피로 물성치의 연관성에 관한 연구 (A Study on the Relationship between Tensile and Low Cycle Fatigue Properties of High Strength Material)

  • 박명규;서창희
    • 소성∙가공
    • /
    • 제23권2호
    • /
    • pp.110-115
    • /
    • 2014
  • Low cycle fatigue characteristics are very important in the development of automobile suspension parts. Fatigue properties using the strain life approach are usually obtained from low cycle fatigue tests. However, low cycle fatigue testing requires a lot of time and cost. In the current study, an attempt to estimate low cycle fatigue properties of high strength steel sheet from tensile test and tensile simulations is performed. In addition, low cycle fatigue testing was conducted to compare the fatigue properties obtained from tensile testing and simulations. In conclusion, the results effectively predict the low cycle fatigue properties. However, some deviations still exist.

반복 전단.인장 변형에 따른 데님 직물의 피로도에 관한 연구 (Fatigue Phenomenon of Mechanical Properties in Denim Fabrics for Slacks during Repeated Shear and Tensile Deformation)

  • 이창미;권오경;박희웅
    • 한국의류학회지
    • /
    • 제20권6호
    • /
    • pp.975-982
    • /
    • 1996
  • This study was conducted to examine the fatigue phenomenon of mechanical properites in denim fabrics for slacks during repeated shear and tensile deformation by analysing the change in the basic dynamic properties of fabrics on the basic of experiments to obtain the basic data necessary to measure their fatigue. In addition, this study was carried out by allowing these denim fabrics at market to go through the repeated deformation under such different loads as 500 gf/cm2 and 1000 gf/cm2 by using a simulated fatigue tester, by calculating both dynamic properties and hand value (HV) of these fabrics with KES-F system and then by obtaining the THV through these calculated properties. The results are as follows: 1 The fatigue phenomenon of dynamic properties was remarkably shown by the repeated shear and tensile deformation, while the increase of hysterical plastic substances was also remarkable in these shearing and bending properties. 2. The elasticity values of tensile, bending and compression properties, such as, B and G were reduced: whereas RT and RC values increased. It was shown, then, that those fabrics lost their elasticity and became flexible and soft with the increase of fatigue. 3. The fatigue phenomenon of hand value also showed that those fabrics became soft in relation with the change of all dynamic properties, and that their performance was also change to flexible hand value. 4. TRhe degree of fatigue was also shown by the loads given to the repeated deformation. It was shown that the fatigue was higher for the tensile load of 1000 gf/cm3 than did the standard load of 500 gf/cm3 It is necessary, therefore, to consider the load in accordance with their usage when examining the fatigue phenomenon with respect to the dynamic properties of clothing materials. 5. The loads were nearly not influenced by the change in the general hand value tended to show a little of increase with the increase of fatigue, Based on those results, it seems that the fatigue phenomonon is related to the loads given to the repeated deformation.

  • PDF

A Study on the Fatigue Property of Magneto-Rheological Elastomers

  • Kim, Tae Woo;Choi, You Jin;Kim, Nam Yoon;Chung, Kyung Ho
    • Elastomers and Composites
    • /
    • 제53권3호
    • /
    • pp.150-157
    • /
    • 2018
  • Fatigue properties of rubber are one of the most important characteristics in the rubber industry. In this study, the fatigue properties of MREs (magneto-rheological elastomers) based on NR (natural rubber), EPDM (ethylene-propylene diene monomer), and AEM (ethylene/acrylic elastomer) were investigated. For comparison, MREs with a Shore hardness of 60A were prepared. According to the relative results, the fatigue properties of EPDM MRE were the worst. Thus, we investigated methods to improve the fatigue properties of EPDM MRE by varying the carbon black content and curing systems of EPDM as the matrix of the MRE. Dynamic properties were measured using a fatigue tester and an RPA (rubber process analyzer), and the XPS (X-ray photoelectron spectroscopy) was used to analyze the curing system of the EPDM matrix. According to the results, the Payne effect increased and the fatigue resistance decreased as the carbon black content increased. In case of the curing system, the CV (conventional vulcanization) system was superior to the EV (efficient vulcanization) system in terms of the fatigue resistance. This was because the number of flexible bonds in the case of the CV system was higher than that in the case of the EV system. However, the EV system showed excellent mechanical properties because it had many monosulfidic bonds with strong binding energy.

AZ61 마그네슘 압출재의 압출 온도에 따른 기계적 특성 및 고주기 피로 특성 (Effect of Extrusion Temperature on Mechanical Properties and High-cycle Fatigue Properties of Extruded AZ61 Alloy)

  • 김예진;차재원;김영민;박성혁
    • 소성∙가공
    • /
    • 제31권3호
    • /
    • pp.117-123
    • /
    • 2022
  • In this study, a commercial AZ61 magnesium alloy is extruded at 300 ℃ and 400 ℃ and the microstructures, mechanical properties, and high-cycle fatigue properties of the extruded materials are investigated. Both extruded materials have a fully recrystallized microstructure with no Mg17Al12 precipitates. The average grain size and maximum basal texture intensity of the extruded material increase with increasing extrusion temperature. The material extruded at 400 ℃ (AZ61-400) has higher tensile yield strength and lower compressive yield strength than the material extruded at 300 ℃ (AZ61-300) because of the stronger basal texture of the former. Because of coarser grain size, the tensile elongation of AZ61-400 is lower than that of AZ61-300. Despite the differences in microstructures and tensile/compressive properties, the two extruded materials have the same fatigue strength of 110 MPa. This is because the finer grain size of AZ61-300 causes an increase in fatigue strength, but its weaker texture causes a decrease in fatigue strength. In both extruded materials, fatigue cracks initiate at the surface of fatigue specimens at all stress amplitudes tested.

Fatigue Properties of Ti-Ni Shape Memory Alloy Wire Welded by Nd: YAG Laser

  • Kim, Y.S.;Kim, J.D.;Kil, B.L.
    • International Journal of Korean Welding Society
    • /
    • 제3권1호
    • /
    • pp.39-44
    • /
    • 2003
  • The welded specimens were made by butt welding of the 2 wires of 50mm length using the pulsed YAG laser. The laser welded wires were tested for investigating the shape memory effect and the ability of super elasticity. The fatigue properties of the welded wires were investigated using the rotary bending fatigue tester specially designed for wires. Moreover, the effect of defocusing distance during laser welding on the static and fatigue properties was Investigated. The shape memory effect and super elasticity of the laser welded wires were approximately identical with that of base metal at the test temperature below 353K. However, the welded wires were broken within elastic limit at the test temperature above 353k. Under the cyclic bending loading conditions, the welded wires could be useful only below the elastic limit, while the base metal had sufficient fatigue life even the stress induced M-phase region. The fatigue strength of the welded wires was about half of that of the base metal. The deterioration of the static and fatigue properties in the welded wires was proven to be from the large difference of the transformation behavior between the base metal and welded part that is caused by vaporization of Ni-content at the welded part during the welding process. The defocusing distance below 3mm acted more largely on lowering the strength of the welded wires than that of 6mm or 8mm.

  • PDF

고강도 극 세선의 피로 특성 향상을 위한 특정 인자 제시 (Critical Parameters governing on the Fatigue Properties in the Hyper-eutectoid Steel Wires used for Automotive Tire)

  • 양요셉;배종구;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.124-127
    • /
    • 2007
  • In this study, we focused on investigation of governing parameters affected on the fatigue properties in the hyper-eutectoid steel wires used for TBR tires. Steel wires are fabricated under different drawing strain from 3.36 to 3.80. Their diameters are 0.21 mm and 0.185mm, respectively. The fatigue properties was measured by hunter rotating beam tester, specially designed thin-sized steel wires. The results showed that the fatigue properites of steel wire, marked as A-1, were greater than the others, due to the low value of residual stress. In order to elucidate the variations of fatigue properties, the microstructure, surface defect and residual stress were observed and measured by useful analysis technique, such as TEM, 3D profiler and FIB.

  • PDF

피로강도평가를 위한 통합 전산 시스템의 개발 (Development of Integrated Fatigue Strength Assessment System)

  • 박준협;송지호
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.264-274
    • /
    • 2001
  • An integrated fatigue strength assessment system was computerized. The system developed consists of 9 modules: user interface, cycle counting, load history construction, data searching, fatigue properties estimation, fatigue data analysis, true stress and strain analysis, expert system for crack initiation life prediction, fatigue crack initiation and propagation life prediction. Fatigue strength database also was included in this system. The fatigue expert system helps a beginner to predict a fatigue crack initiation life in fatigue strength assessment. The expert system module in this system is developed on the personal computer by using C language and UNiK, an expert system developing tool. To evaluate the system, the results of test under variable loading of SAE and failure data from a field were analyzed. The evaluation show that the system provided fatigue life prediction within 3-scatter band and gave reasonable predictions. To get more accurate predictions of fatigue life without fatigue properties, we recommend utilizing the system along with the fatigue strength database.

SNCM220 강 권축의 열처리를 통한 기계적성질 향상 (The Improvement of SNCM220 Winding Shaft in Mechanical Properties by Heat Treatment)

  • 이호성
    • 한국생산제조학회지
    • /
    • 제7권3호
    • /
    • pp.61-67
    • /
    • 1998
  • To find out the reason of fracture, specimens were made from the fractured winding shaft and the mechanical properties as well as their microstructures were investigated. Several heat treatments. including caburizing and tempering were carried out to improve the microstructure, mechanical properties, fatigue crack propagation and rotating bending fatigue characteristics. Through these experiments, following conclusions were obtained. (1) Carburized and tempered specimens showed greatly improved mechanical properties including impact energy, hardness and strength. (2) The fatigue strength of the carburized and tempered specimens increased more than twice than that of the original fractured winding shaft. (3) Crack propagation of the carburized and tempered specimens were faster than that of the original fractured speciens under the same △K. However, it is believed that, in the early stage, the fatigue crack initiation and growth for the carburized and tempered specimen is more difficult.

  • PDF

2단쇼트피닝에 의한 피로특성의 향상 (The Improvement of Fatigue Properties by 2-step Shot Peening)

  • 이승호;심동석
    • 한국표면공학회지
    • /
    • 제36권6호
    • /
    • pp.475-479
    • /
    • 2003
  • In this study, to investigate the effects of 2-step shot peening at the surface of spring steel, tests are conducted on spring steel and shot peened specimens. Various tests are accomplished to evaluate mechanical properties influenced by shot peening process, and fatigue tests are also performed to evaluate the improvement of fatigue strength. And then the residual stresses are examined. The mechanical properties of material did not change so much by shot peening. However, the fatigue strength of notched specimen remarkably increased. In the case of 1-step shot peening, fatigue strength increased by about 20% than unpeened specimen. Especially, in the case of 2-step shot peening, fatigue strength increased by about 40%, because the residual compressive stress at surface was higher than that of 1-step shot peened specimen. The fatigue strength and life are closely related to the value and position of maximum compressive residual stress by shot peening.

Al-3%Ti 박막의 피로성질에 대한 시편 크기 영향 (Specimen Size Effect on Fatigue Properties of Surface-Micromachined Al-3%Ti Thin Films)

  • 박준협;명만식;김윤재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1708-1711
    • /
    • 2007
  • This paper presents high cycle fatigue properties of an Al-3%Ti thin film, used in a RF (radio-frequency) MEMS switch for a mobile phone and also describes new test method for obtaining static and dynamic characteristics of thin film and reliability evaluation method on MEMS device with thin film developed by authors. Durability should be ensured for such devices under cycling load. Therefore, with the proposed specimen and test procedure, tensile and fatigue tests were performed to obtain mechanical and fatigue properties. The specimen was made with dimensions of $1000{\mu}m$ long, $1.0{\mu}m$ thickness, and 3 kinds of width, 50, 100 and $150{\mu}m$. High cycle fatigue tests for each width were also performed, from which the fatigue strength coefficient and the fatigue strength exponent were found to be 193MPa and .0.02319 for $50{\mu}m$, 181MPa and -0.02001 for $100{\mu}m$, and 164MPa and -0.01322 for $150{\mu}m$, respectively. We found that the narrower specimen is, the longer fatigue life of Al-3%Ti is and the wider specimen is, the more susceptible to stress level fatigue life of Al-3%Ti was.

  • PDF