• Title/Summary/Keyword: fatigue phenomenon

Search Result 192, Processing Time 0.03 seconds

A Study on the Effect and Formation of Shear Lip for Al 2024-T3 Materials (Al 2024-T3재에 있어서 Shear Lip의 생성과 그 영향에 관한 연구)

  • 최병기;오환교
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.41-46
    • /
    • 1993
  • This Paper aims to examine the effect of shear lip formation from cross-sections on fatigue crack propagation rate in order to study the fatigue fracture behavior of the high strength aluminum material (Al 2024-T3). The following tests were achieved from this research. 1. As a result of depressing shear lip artificially by adding a side groove to a specimen, it is shown that the propagation rate of fatigue crack is faster than that of general specimen. 2. Through the two-step load test, the phenomenon that the shear lip decreases In the part of changed load gets observed. Consequently It Is shown that the crack propagation rate gets faster.

  • PDF

Rolling Contact Fatigue and Residual Stress Properties of SAE52100 Steel by Ultrasonic Nano-Crystalline Surface Modification (UNSM) (초음파 나노표면 개질처리를 통한 베어링강의 회전접촉피로 및 잔류응력 특성에 대한 연구)

  • Lee, Changsoon;Park, Ingyu;Cho, Insik;Hong, Junghwa;Jhee, Taegu;Pyoun, Youngsik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • To investigate the effect of ultrasonic nano-crystalline surface modification (UNSM) treatment on rolling contact fatigue and residual stress properties of bearing steels, this paper carried out a rolling contact fatigue test, measured residual stress and retained austenite, performed a wear test, observed microstructure, measured micro hardness, and analyzed surface topology. After the UNSM treatment, it was found that the surface became minute by over $100{\mu}m$. The micro surface hardness was changed from Hv730~740 of base material to Hv850~880 with about 20% improvement, and hardening depth was about 1.3 mm. The compressive residual stress was measured as high as -700~-900 MPa, and the quantity of retained austenite was reduced to 27% from 34%. The polymet RCF-6 ball type rolling contact fatigue test showed over 4 times longer fatigue lifetime after the UNSM treatment under 551 kgf load and 8,000 rpm. In addition, this paper observed the samples, which went through the rolling contact fatigue test, with OM and SEM, and it was found that the samples had a spalling phenomenon (the race way is decentralized) after the UNSM treatment. However, before the treatment, the samples had excessive spalling and complete exploration. Comparison of the test samples before and after the UNSM treatment showed a big difference in the fatigue lifetime, which seems to result from the complicated effects of micro particles, compressive residual stress, retained austenite, and surface topology.

A Study for The Optimal Detail on Intersectin of Longitudinal-Transversal Rib in Orthotropic Steel Deck Bridge, Bulkhead Plate Reinforced. (벌크헤드 플레이트로 보강된 강바닥판교의 종리브-횡리브 교차연결부의 최적상세 연구)

  • 공병승;윤성운
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.177-184
    • /
    • 2004
  • Orthotropic steel deck bridge has much advantages such as the light deadweight, so the construction of orthotropic steel deck is profitable for the long-span bridges Although the system has a lot of merits, it happens some damages by the traffic density and the fatigue cracks of welding. The cross-connection of longitudinal rib and transversal rib is one of the weakest at the fatigue. The secondary stresses which are from the out-plane deformation of transversal rib and the torsion of longitudinal rib make the topical stress concentration phenomenon. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This study with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and the cross-connection area of longitudinal and transversal rib

  • PDF

Crack identification with parametric optimization of entropy & wavelet transformation

  • Wimarshana, Buddhi;Wu, Nan;Wu, Christine
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.33-52
    • /
    • 2017
  • A cantilever beam with a breathing crack is studied to improve the breathing crack identification sensitivity by the parametric optimization of sample entropy and wavelet transformation. Crack breathing is a special bi-linear phenomenon experienced by fatigue cracks which are under dynamic loadings. Entropy is a measure, which can quantify the complexity or irregularity in system dynamics, and hence employed to quantify the bi-linearity/irregularity of the vibration response, which is induced by the breathing phenomenon of a fatigue crack. To improve the sensitivity of entropy measurement for crack identification, wavelet transformation is merged with entropy. The crack identification is studied under different sinusoidal excitation frequencies of the cantilever beam. It is found that, for the excitation frequencies close to the first modal frequency of the beam structure, the method is capable of detecting only 22% of the crack depth percentage ratio with respect to the thickness of the beam. Using parametric optimization of sample entropy and wavelet transformation, this crack identification sensitivity is improved up to 8%. The experimental studies are carried out, and experimental results successfully validate the numerical parametric optimization process.

Effect of Oxide Film Formation on the Fatigue Behavior of Aluminum Alloy (알루미늄합금 재료의 산화막 형성이 피로거동에 미치는 영향)

  • Kim, Jong-Cheon;Cheong, Seong-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.421-428
    • /
    • 2012
  • In this study, the effects of surface oxide film formation on the fatigue behavior of 7075-T6 aluminum alloy were analyzed in terms of the corrosion time of the alloy. The aluminum material used is known to have high corrosion resistance due to the passivation phenomenon that prevents corrosion. Aluminum alloys have been widely used in various industrial applications such as aircraft component manufacturing because of their lighter weight and higher strength than other materials. Therefore, studies on the fatigue behavior of materials and passivation properties that prevent corrosion are required. The fatigue behavior in terms of the corrosion time was analyzed by using a four-pointing bending machine, and the surface corrosion level of the aluminum material in terms of the corrosion time was estimated by measuring the surface roughness. In addition, fractographic analysis was performed and the oxide films formed on the material surface were studied by scanning electron microscopy (SEM). The results indicated that corrosion actively progressed for four weeks during the initial corrosion phase, the fatigue life significantly decreased, and the surface roughness increased. However, after four weeks, the corrosion reaction tended to slow down due to the passivation phenomenon of the material. Therefore, on the basis of SEM analysis results, it was concluded that the growth of the surface oxide film was reduced after four weeks and then the oxide film on the material surface served as a protection layer and prevented further corrosion.

Assessment of Fatigue and Fracture on a Tee-Junction of LMFBR Piping Under Thermal Striping Phenomenon

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.267-275
    • /
    • 1999
  • This paper deals with the industrial problem of thermal striping damage on the French prototype fast breeder reactor, Phenix and it was studied in coordination with the research program of IAEA. The thermomechanical and fracture mechanics evaluation procedure of thermal striping damage on the tee-junction of the secondary piping using Green's function method and standard FEM is presented. The thermohydraulic(T/H) loading condition used in the present analysis is the random type thermal loads computed by T/H analysis on the turbulent mixing of the two flows with different temperatures. The thermomechanical fatigue damage was evaluated according to ASME code section 111 subsection NH. The results of the fatigue analysis showed that fatigue failure would occur at the welded joint within 90,000 hours of operation. The assessment for the fracture behavior of the welded joint showed that the crack would be initiated at an early stage in the operation. It took 42,698.9 hours for the crack to propagate up to 5 mm along the thickness direction. After then, however, the instability analysis, using tearing modulus, showed that the crack would be arrested, which was in agreement with the actual observation of the crack. An efficient analysis procedure using Green's function approach for the crack propagation problem under random type load was proposed in this study. The analysis results showed good agreement with those of the practical observations.

  • PDF

Crack Closure and Growth Behavior of Short Fatigue Cracks under Random Loading (Part II : Growth Behavior and Growth Life Prediction) (짧은 피로균열의 랜덤하중하의 균열닫힘 및 진전거동(Part II : 진전거동 및 진전수명예측))

  • Lee, Shin-Young;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.141-146
    • /
    • 2000
  • Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow- and wide-band random loading tests for various stress ratios. The importance of the crack closure phenomenon is examined by predicting the growth lives of short cracks using obtained crack opening behavior. Artificially prepared two-dimensional, short through-thickness cracks are used. The crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks. Most of the life prediction ratios are within the factor of 2 scatter band except several data at very short crack sizes, indicating that crack growth predictions based on the measured crack opening data are excellent. From the results obtained in this study, it can be concluded that crack closure is the primary factor governing fatigue crack growth of short cracks under random loading as well as under constant-amplitude loading.

  • PDF

Development of Green's Functions for Fatigue Damage Evaluation of CANDU Reactor Coolant System Components (CANDU형 원전 주요기기의 피로손상 평가를 위한 그린함수 개발)

  • Kim, Se Chang;Sung, Hee Dong;Choi, Jae Boong;Kim, Hong Key;Song, Myung Ho;Nho, Seung Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.38-43
    • /
    • 2011
  • For the efficient and safe operation of nuclear power plant, evaluating quantitatively aging phenomenon of major components is necessary. Especially, typical aging parameters such as stresses and cumulative usage factors should be determined accurately to manage the lifetime of the plant facility. The 3-D finite element(FE) model is generated to calculate the aging parameters. Mechanical and thermal transfer functions called Green's functions are developed for the FE model with standard step input. The stress results estimated from transfer functions are verified by comparing with 3-D FE analyses results. Lastly, we suggest an effective fatigue evaluation methodology by using the transfer functions. The usefulness of the proposed fatigue evaluation methodology can be maximized by combining it with an on-line monitoring system.

A Study on the Delayed-Retardation of Fatigue Crack Growth Following Single Peak Overload (단일과대하중에 의한 피로균열추전의 지대지연현상에 관한 연구)

  • 오세욱;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1186-1192
    • /
    • 1990
  • It is well known that the fatigue crack growth retardation following overloads can be estimated reasonably well by the models of Wheeler and Willenborg. These models, however, can not explain the delayed-retardation revealed by every experimental result. This means that they necessarily have some qualitative defects in themselves despite of a fair approximation of quantity. In fact, they did not take into account the effects of the compressive portion of the overload cycle such as the change of reversed plastic zone size. The present study is focused on the acceleration effect in the reversed plastic zone in order to analyze qualitatively delayed-retardation phenomenon following single peak overload on the fatigue crack growth behavior using 2024-T3 aluminum alloy.

A Study on the Behavior in the Corner Crack Propagation of Al-Alloy used for the Shipbuilding by the Corrosion Fatigue (부식피로에 의한 선박용 알루미늄 합금제 용접부의 균열 전파기동에 관한 연구)

  • Im, U-Jo;Lee, Jin-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.4
    • /
    • pp.164-171
    • /
    • 1988
  • Recently with the rapid development in marine and shipbuilding industries such as marine structures, ships and chemical plants, it takes much interest in the study of corrosion fatigue characteristics that was close up an important role in mechanical design. In this study, characteristics of corner crack propagation on the base metal and heat affected zone of 5086 Al-Alloy was tested by using of a rotary bending fatigue tester and was investigated under the environments of specific resistance, $\rho$=25$\Omega$ cm and air. The corrosion fatigue crack initiation and corrosion fatigue life sensitivity were quantitatively inspected for 5086 Al-Alloy in the specific resistance, $\rho$=25$\Omega$ cm. Main results obtained are as follows: (1) The corrosion sensitivity of heat affected zone under specific resistance, $\rho$=25$\Omega$cm shows approximately 1.69~2.22 and corrosion sensitivity of base metal is more susceptible than that of heat affected zone. (2) The corrosion fatigue life sensitivity on heat affected zone decreases eminently than that of initial corrosion fatigue crack. (3) The characteristics of quarter elliptical corner crack propagation shows that depth crack is more grown than surface crack at crack initiation, but the surface crack is more propagated than depth crack as the crack propagation is increased. (4) The surface crack and depth crack growth on heat affected zone by softness show delayed phenomenon than that of base metal.

  • PDF