• Title/Summary/Keyword: fatigue life curve

Search Result 272, Processing Time 0.035 seconds

A complete integrity assessment of welded connections under high and low cycle fatigue followed by fracture failure

  • Feng, Liuyang;Liu, Tianyao;Qian, Xudong;Chen, Cheng
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.465-481
    • /
    • 2022
  • This paper presents a comprehensive integrity assessment of welded structural components, including uniform high- and low-cycle fatigue assessment of welded plate joints and fatigue-induced fracture assessment of welded plate joints. This study reports a series of fatigue and fracture tests of welded plate joints under three-point bending. To unify the assessment protocol for high- and low-cycle fatigue of welded plate joints, this study develops a numerical damage assessment framework for both high- and low-cycle fatigue. The calibrated damage material parameters are validated through the smooth coupon specimens. The proposed damage-based fatigue assessment approach describes, with reasonable accuracy, the total fatigue life of welded plate joints under high- and low-cycle fatigue actions. Subsequently, the study performs a tearing assessment on the ductile crack extension of the fatigue-induced crack. The tearing assessment diagram derives from the load-deformation curve of a single-edge notched bend, SE(B) specimen and successfully predicts the load-crack extension relation for the reported welded plate joints during the stable tearing process.

FATIGUE DESIGN OF BUTT-WELDED TUBULAR JOINTS

  • Kim, D. S.;S. Nho;F. Kopp
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.127-132
    • /
    • 2002
  • Recent deepwater offshore structures in Gulf of Mexico utilize butt welded tubular joints. Application of welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical because the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimating the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves specified in the codes and standards. Applying the stress concentration factor of the welded structure to S-N approach often results in very conservative assessment because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fracture mechanics and fitness for service (FFS) technology have been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves to be used and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. An attempt was made to develop set of S-N curves based on fracture mechanics approach by considering non-uniform stress distribution and a threshold stress intensity factor. Series of S-N curves generated from this approach were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02"). Similar comparison with API X′ was made for tubular joint.. These initial crack depths are larger than the limits of inspection by current Non-destructive examination (NDE) means, such as Automatic Ultrasonic Inspection (AUT). Thus a safe approach can be taken by specifying acceptance criteria that are close to limits of sizing capability of the selected NDE method. The comparison illustrates conservatism built into the S-N design curve.

  • PDF

Fatigue strength of stud shear connector considering bedding layer thickness in precast deck composite bridges (프리캐스트 바닥판 합성형 교량에서의 베딩층의 두께를 고려한 전단연결재의 피로강도)

  • Ryu, Hyung Keun;Shim, Chang Su;Chung, Chul Hun;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.113-120
    • /
    • 2002
  • A shear connection in composite bridges with precast decks has considerable characteristics different from cast-in-place deck bridges such as shear pocket and bedding layer. Thus, it is necessary to build design basis of the shear connector in precast decks through the experiments. In order to estimate fatigue life of shear connector in precast deck bridges, push-out fatigue tests were conducted with parameter, bedding layer thickness. As a result of the tests, failure modes of shear connector were observed. Consequently, empirical S-N curve equations of stud shear connector in precast deck bridges were proposed in this paper.

A Experimental Estimation of Thermal Fatigue at Polyethylene Boat (폴리에틸렌 보트의 열피로 손상의 실험적 평가)

  • Cho, Seok Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2559-2565
    • /
    • 2013
  • Material of boat hull has been used mainly with FRP composite materials until now. FRP boat hull manufacturing began to be restricted after the 2000's under international regulation on ocean environment safety. Shipyard on a small scale has manufactured polyethylene canoe and kayak hulls. Polyethylene has the melting point lower than the existing hull materials. Thermal stress occurs on outer hull surface when the polyethylene boat hull is exposed to sunlight. If it happens everyday, boat hull undergoes fatigue damage due to thermal fatigue. Therefore, this study presents the statistical fatigue life estimation on the HDPE boat hull subject to repeated thermal stress under three point bending condition.

A Study on the Fatigue Strength of Propeller Blades (프로펠러 날개의 피로강도에 관한 연구)

  • Nho, In-Sik;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.539-543
    • /
    • 2011
  • Recently, to reduce the noise and vibration levels of ships, high skewed marine propellers with thinner thickness are adopted widely, however, such propeller design trend causes to reduce the strength of blades. Propeller blades are rotating continuously in irregular wake field of ships. So, it is necessary to examine the strength of them precisely including from a viewpoint of fatigue strength. In present paper, the fatigue strength of propeller blades was investigated. Firstly, fatigue tests for Al Bronze, the representative propeller material, were carried out. The S-N curve was obtained for the assessment of the fatigue crack initiation life. And the material properties C, m for the fatigue crack propagation analysis based on the Paris' equation were derived. For the 2nd stage, the structural responses of propeller blades in irregular ship wake field was carried out using the finite element analysis code. And the fatigue strength of propeller blades were considered based on the calculated stress levels and material characteristics for fatigue strength.

Fatigue Safe Life Analysis of Helicopter Bearingless Rotor Hub Composite Flexbeam (헬리콥터 무베어링 로터 허브 복합재 유연보 피로 안전수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-Kwan;Kim, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.561-568
    • /
    • 2013
  • After we designed Bearingless rotor hub system for 7,000lb class helicopter, flexbeam fatigue analysis was conducted for validation of requirement life time 8,000 hours. sectional structural analysis method applying elastic beam model was used. Fatigue analysis for two sections of flexbeam which were expected to weak to fatigue damage from result of static analysis was conducted. Extension, bending and torsion stiffness of flexbeam section shape was calculated using VABS for structure analysis. S-N curve of two composite material which composed flexbeam was generated using wohler equation. Load analysis of bearingless rotor system was conducted using CAMRAD II and load analysis result was applied HELIX/FELIX standard load spectrum to generate bearingless rotor system load spectrum which was used flexbeam fatigue safe life analysis.

Fatigue Cumulative Damage and Life Prediction of Uncovered Freight Car Under Service Load using Rainflow Counting Method (운전하중하의 레인플로집계법을 이용한 철도차량 무개화차의 피로누적손상과 수명예측)

  • Baek, Seok-Heum;Lee, Kyoung-Young;Mun, Sung-Jun;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • An end beam is one of the most important structural members supporting uncovered freight under in-service loading. In general, it needs to endure over 25 years. However fatigue fracture has occurred at dynamic stress concentration location of the end beam because user's specifications demanded high speed and vehicle manufacturer made the uncovered freight car with comparatively low strength and stiffness. For durability analysis, finite element analysis is performed to evaluate the problem of uncovered freight structure and local strain. The uncovered freight car was operated on actual problematic railroad line to measure dynamic stress versus time history on the critical part from which a crack is initiated often. Rainflow cycle counting method was used to estimate fatigue damage at dangerous area under operating condition. Therefore, this study shows that analytical fatigue life at the end beam can be predicted on the basis of S-N curve and structure analysis and has a fairly good correlation with experimental fatigue life.

An experimental study of bending fatigue life (S-N curve) of the helical gear for the automotive transmission (자동차 Transimission용 Helical Gear의 굽힘 피로 수명 곡선(SS-N Curve)에 관한 실험적 고찰)

  • 이원희;허윤무
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.11-17
    • /
    • 1990
  • 자동차용 변속기의 설계에 있어서 적용 Engine의 출력 및 차량 성능에 부합하는 동력전달 요소의 전달 용량 및 내구 수명을 고려해야 한다. 특히 자동차가 고속 경량화됨에 따라 변속기의 설계에 있어서도 동력전달 요소들의 소형 고용량화가 요구되며 이를 위해서는 설계시 동력전달 요소들의 정확한 강도 및 피로수명 예측이 필수적이다. 본 보고서에서는 Gear의 굽힘응력 계산식에 대한 고찰 및 Gear의 피로시험을 통하여 Helical 치차의 Bending stress에 대한 피로수명 곡선의 시험식을 도출하였다.

  • PDF

A Study on Die Wear Model considering Thermal Softening(I) -Construction of Wear Model (열연화를 고려한 금형마멸모델에 관한 연구(I)-마멸모델의 정립)

  • Kang, Jong-Hun;Park, In-Woo;Jae, Jin-Soo;Kang, Seong-Soo
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.274-281
    • /
    • 1998
  • The service life of tools in metal forming process is to a large extent limited by wear, fatigue fracture and plastic deformation. In elevated temperature forming processes wear is the predominant factor for tool operating life. To predict tool life by wear Achard's model is generally applied. Usually hardness of die is considered to be a function of temperature. But hardness of die is a function of not only tem-perature but also operating time of die. To consider softening of die by repeated operation it is necessary to express hardness of die by a function of a function of temperature and time. By experiment of reheating of die softening curve was obtained and applied to suggest modified Archard's Model in which hardness is a function of main tempering curve.

  • PDF

Assessment of Fatigue Life of Out-Of-Plane Gusset Welded Joints using 3D Crack Propagation Analysis (3차원 피로균열 진전해석을 통한 면외거셋 용접이음의 피로수명 평가)

  • Jeong, Young-Soo;Kainuma, Shigenobu;Ahn, Jin-Hee;Lee, Wong-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.129-136
    • /
    • 2018
  • The estimation of the fatigue design life for large welded structures is usually performed using the liner cumulative damage method such as Palmgren-Miner rule or the equivalent damage method. When a fatigue crack is detected in a welded steel structure, the residual service life has to be estimated base on S-N curve method and liner elastic fracture mechanics. In this study, to examine the 3D fatigue crack behavior and estimate the fatigue life of out-of-plane gusset fillet welded joint, the fatigue tests were carried out on the model specimens. Investigations of three-dimensional fatigue crack propagation on gusset welded joint was used the finite element analysis of FEMAP with NX NASTRAN and FRANC3D. Fatigue crack growth analysis was carried out to demonstrate the effects of aspect ratio, initial crack length and stress ratio on out-of-plane gusset welded joints. In addition, the crack behaviors of fatigue tests were compared with those of the 3D crack propagation analysis in terms of changes in crack length and aspect ratio. From this analysis result, SIFs behaviors and crack propagation rate of gusset welded joint were shown to be similar fatigue test results and the fatigue life can also be predicted.