• Title/Summary/Keyword: fatigue fracture

Search Result 1,091, Processing Time 0.025 seconds

Experimental Study on Plane Stress Fracture Toughness and Fatigue Crack Propagation of SS304 and SS316 (SS304와 SS316의 평면응력 파괴인성치 측정과 피로 균열 전파에 대한 실험적 연구)

  • Lee, O.S.;Han, Y.S.;Yoo, S.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.61-69
    • /
    • 1997
  • A simple and relatively new experimental method is proposed to estimate the plane stress fracture toughness by using compact tension (CT) specimen. The anti-buckling plates (fabricated to prevent the buckling caused by the 45 plastic yielding around crack tip under the plane stress condition) help to determine the relatively accurate plane stress fracture toughness of two stainless steels (SS304 and SS316). The fatigue crack propagation behavior of two stainless steels under two different loading conditions such as 10Hz and 5Hz frequency fatigue loadings was investigated by using image analysis technique (IAT) which renders several technical advantages over various conventional measuring methods. It was found that the IAT could be used to estimate fatigue crack lengths more effectively. Furthermore, it was suggested that we might control the measuring time interval for fatigue crack propagation by nearly automatically controlled technical process with the help of IAT.

  • PDF

Elevated Temperature Static Fatigue in Silicon Nitride (질화규소의 고온정피로거동)

  • Choi, Guen;Choi, Bae-Ho;Kim, Ki-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.15-20
    • /
    • 1999
  • Elevated temperature static fatigue behavior of silicon has been investigated by stress intensity/life test method. Static fatigue crack growth rate increase with the increase of temperature. Such tendency is found to be mainly related to the decrease of fracture toughness with the increase of temperature. That is, when static fatigue crack growth rate, da/dt is expressed by da/dt=AK1m, a constant A is a function of fracture toughness Kc and the exponent m is a constant which is independent of temperature or Kc. However, in the case of high temperature that glass phase is softened, the crack growth rate is found to be deviated from the above relation. This reason is, thus, discussed.

  • PDF

Effect of Alloying on the Microstructure and Fatigue Behavior of Fe-Ni-Cu-Mo P/M Steels

  • Bohn, Dmitri A.;Lawley, Alan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.34-34
    • /
    • 1997
  • The effect of alloying mode and porosity on the axial tension-tension fatigue behavior of a P/M steel of nominal composition Fe-4w/o Ni-1.5w/o Cu-O.5w/o Mo-O.5w/o C has been evaluated. Alloying modes utilized were elemental powder mixing, partial alloying(distaloy) and prealloying by water atomization; in each case the carbon was introduced as graphite prior to sintering. Powder compacts were sintered($1120{\circ}C$/30 min.) in 7Sv/o $H_2$/25v/o $N_2$ to densities in the range 6.77-7.2 g/$cm^3$. The dependence of fatigue limit response on alloying mode and porosity was interpreted in terms of the constituent phases and the pore and fracture morphologies associated with the three alloying modes. For the same nominal composition, the three alloying modes resulted in different sintered microstructures. In the elemental mix alloy and the distaloy, the major constituent was coarse and fine pearlite, with regions of Ni-rich ferrite, Ni-rich martensite and Ni-rich areas. In contrast, the prealloy consisted primarily of martensite by with some Ni-rich areas. From an examination of the fracture surfaces following fatigue testing it was concluded that essentially all of the fracture surfaces exhibited dimpled rupture, characteristic of tensile overload. Thus, the extent of growth of any fatigue cracks prior to overload was small. The stress amplitude for the three alloying modes at 2x$l0^6$ was used for the comparison of fatigue strengths. For load cycles <3x$l0^5$, the prealloy exhibited optimum fatigue response followed by the distaloy and elemental mix alloy, respectively. At load cycles >2x$l0^6$, similar fatigue limits were exhibited by the three alloys. It was concluded that fatigue cracks propagate primarily through pores, rather than through the constituent phases of the microstructure. A decrease in pore SIze improved the S-N behavior of the sintered steel.

  • PDF

A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM (X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구)

  • Kim, Sung-Woong;Hong, Soon-Hyeok;Jeon, Hyoung-Yong;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.258-265
    • /
    • 2001
  • Turbine blade is subject to force of three type ; torsional force by torsion-mount, centrifugal force by rotation of rotor and cyclic bending force by steam pressure. Cyclic bending force of them is main factor on fatigue fracture. In the X-ray diffraction method, the change in the values related to plastic deformation and residual stress near the fracture surface mat be determined, and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade parts was predicted. Failure analysis is performed by finite element method and Goodman diagram on torsion-mounted blade.

  • PDF

A Fracture Mechanic Study on Life Prediction of Surface Cracks at Elevated Temperature (고온화 표면균열의 수명예측에 관한 파괴역학적 연구)

  • Chang-Min,Suh;Young-Ho,Kim;Bung-Ho,Son;Sang-Yeub,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.100-106
    • /
    • 1990
  • Microcracking of type 304 stainless steel at $593^{\circ}C(1,100^{\circ}F)$ has been studied, in particular, initiation, growth, and coalescence of fatigue and creep microcracks on smooth specimens and small notch specimens via surface replicas and photomicrographs. Quantitative information, such as, initiation period, growth, and coalescence behavior, statistical distributions of crack length, density of cracks, distribution patterns and crack growth properties, were obtained. From this study, the fracture process, fatigue life, and creep life prediction characterized by the growth of surface microcracks have been analysed by a new approach unifying the conventional approaches based on the final fracture of materials with the fracture mechanics approach. Knowledge of these parameters is critical for the application of fracture mechanics to fatigue and creep life assessment, and the damage evaluation of structures at elevated temperature.

  • PDF

Fatigue Crack Propagation Life of Partially Penetrated Butt Welds in High Strength Steel (고장력 강판 부분용입 맞대기 용접부의 피로균열진전수명 평가)

  • Han, Seung-Ho;Shin, Byung-Chun;Lee, Woong;Choi, Jeon-Ho
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • Fatigue behaviour of partially penetrated butt-welded joints in high strength steel plates, in which crack-like structural defect, i.e. lack of penetration(LOP), is inevitably introduced during welding processes, was investigated. Fatigue lives of two types of welded joints, namely X-grooved and K-grooved joints, were experimentally determined first. Observed fatigue crack propagation behaviours of the partially penetrated butt-welds were interpreted through considering 3-dimensional semi-elliptical crack shape in front of the LOP. Based on such interpretation, a fracture mechanical method to estimate stress intensity factors at the crack tip was proposed. Since the fatigue lift of the partially penetrated butt-welds was strongly influenced by the ratio of size of the LOP to thickness, D/t, the D/t was used as a main parameter to calculate the fatigue lift by using the proposed method. Comparison of the fatigue lift obtained experimentally and analytically agreed well with each other. Hence it is suggested that the method used in this work to predict fatigue lift of the partially penetrated butt-welds can be applied to real cases with improved lift-prediction capability.

The Effect of Shot Peening on the Improvement of Fatigue Strength and Characteristics Fatigue Crack of the Aluminum Alloys (알루미늄 합금의 피로강도향상과 피로특성에 미치는 쇼트피닝 영향)

  • Jeon, Hyun-Bae;Lim, Man-Bae;Park, Won-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.256-261
    • /
    • 2007
  • The purpose of this study is to investigate the effect of shot peening on the fatigue strength and fatigue life of two kinds of aluminum alloys. The fatigue strength behavior of aluminum alloys were estimated by the stress ratio and shot velocities. The fatigue life and strength increased with increasing the test shot velocity. However, at the shot velocity range between 50m/s and 70m/s, the compressive residual stress phenomena were observed in test conditions of different shot velocity. The optimal shot velocity is acquired by considering the peak values of the compressive residual stress, dislocations, brittle striation, slip, and fisheye on the fracture surface of test specimen. It was observed from the SEM observation on the deformed specimen that the brittle striation, fisheye were showed in the intergranular fracture structure boundaries at the this velocities. Therefore, fatigue strength and fatigue life would be considered that shot velocity has close relationship with the compressive residual stress.

  • PDF

Fatigue Properties of Rail Steel Under Constant Amplitude Loading and Variable Amplitude Loading (일정 및 변동하중하의 레일강의 피로특성)

  • Kim, Cheol-Su;Kim, Jeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.654-661
    • /
    • 2001
  • In this study, fatigue growth behavior of the transverse crack, which was the most dangerous damage among the various types of rail defects, was investigated using the notched keyhole specimen under constant amplitude loadings. Fatigue limit of smooth specimen in rail steel at R=0 was 110MPa, and the fatigue crack initiation life in the region of the low stress amplitude (ie. long life) occupied the major portion of the total fatigue life. The fatigue strength under variable amplitude loading was converted to the equivalent fatigue strength based upon. Miners rule, which was estimated approximately 9% lower than that under constant amplitude loading. Also, in the low ΔK(sub)rms region ($\leq$21MPa√m), fatigue crack growth rate (da/dN) under constant amplitude loading was higher than that under variable amplitude loading, whereas the tendency was reversed in the high ΔK(sub)rms region. It is believed that this behavior is due to the transition of fracture appearance.

The Effect of Compressive Residual Stress on Fatigue Fracture of the Spring steel (현가장치용 SUP-9강의 피로파괴에 미치는 압축잔류응력의 영향)

  • Park, Kyoung-Dong;Jin, Young-Beom
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.79-85
    • /
    • 2004
  • The lightness of components required in automobile and machinery industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part of current industries. Currently, the shot peening is used for removing the defects from the surface of steel and improving the fatigue strength on surface. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9)by shot peening on fatigue crack growth characteristics in stress ratio(R=0 1, R=0 3, R=0 6)was investigated considering fracture mechanics. By using the methods mentioned above, I arrived at the following conclusions: (1) The fatigue crack growth rate(da/dN) of the shot peening material was lower than the unpeening material And in stage I, ${\Delta}K_{th}$, the threshold stress intensity factor, of the shot peening material is high in critical parts unlike the unpeening material. (2) Fatigue life shows more Improvement in the shot peening material than in the unpeening material. And compressive residual stress of surface on the shot peening processed operate the resistance of fatigue crack propagation.

  • PDF

Effects of Cr Content and Volume Fraction of δ-Ferrite on Thermal Cycling Fatigue Properties of Overlay Welded Heat-Resistant 12%Cr Stainless Steels (내열용 오버레이 12%Cr계 스테인레스강의 열피로 특성에 미치는 Cr 함량과 델타-페라이트의 영향)

  • Jung, J.Y.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.356-364
    • /
    • 2017
  • In this study, submerged arc cladded Fe-Cr-Ni-Mo-CuWNbV-C stainless steels containing various Cr contents between 11.2 wt.% and 16.7 wt.% were prepared with fixed C content at about 0.14 wt.%. Using these alloys, changes in microstructure, tensile property, and thermal fatigue property were investigated. Phase fraction of delta-ferrite was increased gradually with increasing Cr content. However, tensile strength, hardness, and thermal fatigue resistance appeared to be decreased. When the microstructure of delta-ferrite was observed, it was revealed that the mesh structure retained up to about 15% Cr content. Although thermal fatigue resistance was almost the same for Cr contents between 11.0 and 14.5 wt.%, it was significantly decreased at higher Cr contents. This was evident from mean value of crack lengths of 10 largest ones. Evaluation of thermal fatigue resistance on alloys with various Cr contents revealed the following important results. First, the reproducibility of ranking test was excellent regardless of the number of cycles. Second, thermal fatigue resistance was increased in proportion to true tensile fracture strength values of overlay materials. Finally, the number of thermal fatigue cracks per unit length was increased with increasing true tensile fracture strength.