• Title/Summary/Keyword: fatigue crack growth test

Search Result 305, Processing Time 0.028 seconds

A model of fatigue crack growth based on plastic stretch at the crack tip (균열선단의 소성스트레치를 이용한 피로균열성장모델)

  • Ju, Yeong Sik;Kim, Jae Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.15-22
    • /
    • 2003
  • The fatigue crack growth model is derived and the retardation model is proposed. The fatigue crack growth model considers the residual plastic stretch on the crack surface which results from the plastic deformation at the tip of fatigue crack. The fatigue crack growth rate is calculated by using the cumulative fatigue damage and plastic strain energy in the material elements at the crack tip. This model gives the crack growth rate in reasonable agreement with test data for aluminum alloy AL6061-T651 and 17-4PH casting steel. The fatigue crack growth retardation model is based on the residual plastic stretch produced from a tensile overload which reduced the plastic strain range of the following load cycles. A strip-yield model of a crack tip plasticity is used for the calculation of a plastic zone size. The proposed retardation model characterized the observed features and delayed retardation of the fatigue crack growth under tensile overload.

Statistical Life Prediction of Fatigue Crack Growth for SiC Whisker Reinforced Aluminium Composite (SiC 휘스커 보강 Al6061 복합재료의 통계학적 피로균열진전 수명예측)

  • 권재도;안정주;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.475-485
    • /
    • 1995
  • In this study, statistical analysis of fatigue data which had obtained from respective 24 fatigue crack, was examined for SiC whisker reinforced aluminium 6061 composite alloy (SiC$_{w}$/A16061) and aluminium 6061 alloy. SiC volume fraction in composite alloy is 25%. The analysis results stress intensity factor range and 0.1 mm fatigue crack initiation life for SiC$_{w}$/A16061 composite & A16061 matrix are the log-normal distribution. And regression analysis by linear model, exponential model and multiplicative model were performed to find out the relationship between fatigue crack growth rate(da/dN) and stress intensity for find out the relationship between fatigue crack growth rate(da/dN) and stress intensity factor range(.DELTA.K) in the SiC$_{w}$/A16061 composite and examine the applicability of Paris' equation to SiC$_{w}$A16061 composite. Also computer simulation was performed for fatigue life prediction of SiC$_{w}$/A16061 composite using the statistical results of this study.udy.

A Study on the Shot Peening on the High Temperature Fatigue Crack Propagation (쇼트피이닝 가공된 스프링강의 고온 피로균열진전 평가)

  • 박경동;정찬기;하경준
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.264-268
    • /
    • 2001
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature, low temperature and high temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room, and high temperature at $25^{\circ}C,\; 50^{\circ}C, \;100^{\circ}C,\; 150^{\circ}C,\; and\; 180^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range $\DeltaK_{th}$ in the early stage of fatigue crack growth (Region I ) and stress intensity factor range $\Delta$K in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF

A Study on the Fatigue Crack Propagation Characteristics for SUP9 Steel at Low Temperature (SUP9강의 저온피로크랙 전파특성에 관한 연구)

  • 박경동;박상오
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.80-87
    • /
    • 2002
  • In this study, CT specimens were prepared from spring steel(SUP9) which was used in suspension of automobile for room temperature and low temperature service. We got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, ­3$0^{\circ}C$, ­5$0^{\circ}C$, ­7$0^{\circ}C$ and ­10$0^{\circ}C$ in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to descend temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

An Effect of Temperature on the Fatigue Crack Propagation Behavior of Spring Steel for Vehicle (차량용 스프링강의 피로거동에 미치는 온도의 영향)

  • 박경동;류찬욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • In this study, CT specimens were prepared from spring steel(SUP9) processed shot peening which was room temperature and low temperature experiment. And we got the following characteristics from fatigue crack growth test carried out in the environment of room temperature and low temperature at $25^{\circ}C$, $-30^{\circ}C$, $-50^{\circ}C$, $-70^{\circ}C$,$-100^{\circ}C$, and $-150^{\circ}C$, in the range of stress ratio of 0.05 by means of opening mode displacement. The threshold stress intensity factor range ΔKth in the early stage of fatigue crack growth (Region I)was increased but stress intensity factor range ΔK in the stable of fatigue crack growth (Region II) was decreased in proportion to decrease temperature. It is assumed that the fatigue resistance characteristics and fracture strength at low temperature and high temperature is considerably higher than that of room temperature in the early stage and stable of fatigue crack growth region.

A Study of Fatigue Crack Threshold Characteristics in Pressure Vessel Steel at Low Temperature (압력용기용 강의 저온 피로크랙 하한계 특성에 관한 연구(II))

  • 박경동;김정호;정찬기;하경준
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.78-83
    • /
    • 2000
  • In this study, CT specimens were prepared from AST SA516 Gr. 70 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at 25$^{\circ}C $, -60$^{\circ}C $, -80$^{\circ}C $ and -100$^{\circ}C $ and in the range of stress ratio of 0.05, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ${\delta} K_{th}$ in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\delta $K in the stable of fatigue crack growth (Region II) were increased in proportion to descending temperature. It was assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN -$\delta $K in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It was assumed that the fatigue crack growth rate da/dN is rapid in proportion to descending temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

A Study on the Stress ratio affect on the Fatigue Crack Characteristics of Pressure Vessel SA516 Steel at Low Temperature (저온 압력용기용 SA516강의 응력비에 따른 피로크랙 전파특성에 관한 연구)

  • 박경동;하경준;박형동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1228-1236
    • /
    • 2001
  • In this study, CT specimens were prepared from ASTH A5l6 steel which was used for pressure vessel plates for moderate and lower temperature service. And we got the fellowing characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$ , $-30^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, $-100^{\circ}C$ and $-120^{\circ}C$ and in the range of stress ratio of 0.1, 0.3 by means of opening mode displacement. At the constant stress ratio, the Threshold stress intensity factor range ΔAKth in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\DeltaK$ in the stable of fatigue crack growth (Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN-$\Delta$K in Region II that is, the fatigue clack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

A study on the growth behaviors of surface fatigue crack initiated from a small-surface defect of 2024-T3 and brass (2024-T3 및 황동의 작은 표면결함재의 피로균열 성장특성에 관한 연구)

  • 서창민;오명석
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.53-64
    • /
    • 1996
  • In this paper, rotating bending fatigue tests have been carried out to investigate the growth behabiors of surface fatigue crack initiated from a small artificial surface defect, that might exist in real structures, on 2024-T3 and 6:4 brass. The test results are analysed in the viewpoints of both strength of materials and fracture mechanics, it can be concluded as follows. The effect of a small artificial surface defect upon the fatigue strength is very large. The sensitivity of 2024-T3 on the defect is higher than that of 6:4 brass. The growth behavior of the surface fatigue crack of 2024-T3 is different from that of 6:4 brass. The growth rate of the surface fatigue crack of 2024-T3 is considerably rapid in the early stage of the fatigue life and apt to decrease in the later stage. It was impossible to establish a unifying approach in the analysis of crack growth begabior of 2024-T3 and 6:4 brass using the maximum stress intensity factor because of their dependence on stress level. But if the elastic strain and cyclic total strain intensity factor range were applied to obtain the growth rate of surface fatigue cracks of the materials, the data were found to be nearly coincided.

  • PDF

A Study of Stress ratio on the Fatigue Crack Growth Characteristics of Pressure Vessel SA516 Street at Low Temperature (저온 압력용기용 SA516강의 응력비에 따른 피로크랙 전파특성에 관한 연구)

  • 박경동;하경준
    • Proceedings of the KWS Conference
    • /
    • 2001.05a
    • /
    • pp.220-223
    • /
    • 2001
  • In this study, CT specimens were prepared hem ASTM SA516 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -l$0^{\circ}C$ and -l2$0^{\circ}C$ and in the range of stress ratio of 0.1, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ΔK$_{th}$ in the early stage of fatigue crack growth ( Region I ) and stress intensity factor range ΔK in the stable of fatigue crack growth ( Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN - ΔK in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region H and the cryogenic-brittleness greatly affect a material with decreasing temperature.e.greatly affect a material with decreasing temperature.

  • PDF

The Effect of High Velocity Oxygen Fuel Thermal Spray Coating on Fatigue Crack Growth Behavior for Welded SM490B (SM490B 용접부의 피로균열 성장 거동에 미치는 초고속 용사코팅 효과)

  • Yoon, Myung-Jin;Choi, Sung-Jong;Cho, Won-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.99-106
    • /
    • 2006
  • High velocity oxygen-fuel thermal spray coating of the WC-Co cermet material is a well-established process for modifying the surface properties of the structural components exposed to the corrosive and wear attacks, and also these coating are well-known method to improve the fatigue strength of material. In this study, HVOF coated SM490B are prepared to evaluation of the effect of coating on tension and fatigue crack growth behavior. The pre-crack of the fatigue crack growth test specimens machined at deposited material area, heat affected zone and boundary, respectively. Through these test, the following results are obtained: 1) Tensile strength was about 498 MPa, and fracture occurred on base metal area. 2) The fatigue crack of coated specimens propagated more rapidly than non-coated specimen in all specimens. 3) In the same coating thickness specimens, the specimens with pre-crack at boundary more rapidly propagated than the specimens with pre-crack at HAZ and deposited material area. These results can be used as basic data in a structural integrity evaluation of rolled SM490B weldments considering HVOF coating.