• Title/Summary/Keyword: fatigue crack growth rate

Search Result 437, Processing Time 0.022 seconds

Fatigue Crack Growth Behavior of Membrane Material for LNG Storage Tank at Low Temperatures (저온하에서 LNG저장탱크용 멤브레인재(STS 304강)의 피로균열진전거동)

  • 김철수
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • The fatigue crack growth behavior of the cold-rolled STS 304 steel developed for membrane material of LNG storage tank was examined experimentally at 293K, 153K and 111K. The fatigue crack growth rate(do/dN) tends to increase as the stress ratio (R) increases over the testing temperature when compared at the same stress intensity factor range($\Delta$K). The effect of R on do/dN is more explicit at low temperatures than at room temperature. The resistance of fatigue crack growth at low temperatures is higher compared with that at room temperature which is attributed to the extent of strain-induced martensitic transformation at the crack tip. The temperature dependence of fatigue crack growth resistance is gradually vanished with an increase in $\Delta$K which correlates with a decreasing fracture toughness with decreasing temperature. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperature are mainly explained by the crack closure and the strengthening due to the martensitic transformation.

  • PDF

Fatigue Behavior of Welded Joints in HT60 Grade TMCP Steel (HT60급 TMCP강 용접부의 피로 거동)

  • Yong, Hwan Sun;Kim, Seok Tae;Cho, Yong Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.133-133
    • /
    • 1996
  • Application of the relationship $da/dN=C({\Delta}K)^{m}$ is effective in the analysis of fatigue crack growth life. The values of material constant C and m have great influences on the predicted fatigue life and the relationship between fatigue crack growth rate(da/dN) and stress intensity factor range(${\Delta}K$) is effective in fatigue crack growth behavior. In this paper, fatigue crack growth behavior of the welded joints in HT60 grade TMCP(Thermo Machanical Control Process) steel have been studied. To evalute the fatigue crack growth rates of HT60 grade TMCP steel, fatigue test was performed by base metal(BM), heat affected zone(HAZ) and weld metal(WM) in TMCP steel at room temperature. We determined the relationship of $da/dN-{\Delta}K$ by correlation between C and m obtained from the Paris-Erdogan power law data supplied HT60 grade TMCP steel. The obtained results from this study indicate that fatigue crack growth rate of TMCP steel is not influenced by softening effect which occurs in the HAZ when high heat input weld is carried out. Softening effects, which affect fatigue properties. are shown that it is not affected to the fatigue growth rates significantly.

  • PDF

Evaluation of Fatigue Crack Growth Rate on the Surface of Steel Members Using COD(Crack Opening Displacement) Measurement (COD(Crack Opening Displacement) 측정에 의한 강재표면의 피로균열진전속도 평가)

  • Kim, Kwang Jin;Kim, In Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Steel structures have been allowed to have fatigue damage tolerance in fact. If it would be assessed whether fatigue crack is growing or not and How fast fatigue crack is propagating, we should make a rational decision on methods and a period of reinforcement in the maintenance. In this study, fatigue crack growth tests on two kinds of through-thickness cracked steel plates and a out-of-plane gusset welded joint were conducted to evaluate fatigue crack growth rate using the COD(Crack Opening Displacement), and COD measurement using strain gauges was examined to offer a practical method. As a result, we proposed a reasonable assessing method for fatigue crack growth rate using the COD and it was experimentally proved practical to estimate the COD through measuring strains.

Evaluation of Fatigue Crack Growth Characteristics Considering Crack Closure Phenomenon in Weldment of Multi-Pass Welded Pipe (다층용접배관 용접부에서 균열닫힘현상을 고려한 피로균열성장특성 평가)

  • Kim, Cheol-Han;Jo, Seon-Yeong;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.797-804
    • /
    • 2001
  • To obtain representative fatigue crack growth characteristic curve in residual stress field, fatigue crack growth test was carried out at various stress ratio and fatigue crack growth characteristic curve was represented using crack closure concept. Obtained results are as follows;K(sub)op/K(sub)max was independent of K(sub)max when R was lower than 0.5 and crack closure phenomenon was not observed when R is higher than 0.5. therefore neglecting crack closure behaviour, actual fatigue crack growth rate can be underestimated. Thus, considering crack closure phenomenon, fatigue crack growth characteristics curve of A 106 Gr B Steel weldment can be effectively estimated.

Bridging Effect and Fatigue Crack Growth of Silicon Nitride (질화규소의 피로균열진전과 입자가교효과)

  • 유성근
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1203-1208
    • /
    • 1996
  • Crack growth tests on silicon nitride have been made to clarify the crack growth characteristics under static and cyclic loading. Under constant K(K: stress intensity factor) static loading the crack growth rate in silicon nitride decreases with increasing crack extension and is finally arrested. The cack growth resistiance is largely reduced by the application of stress cycling and though the crack growth resistiacne increases with increasing of crack extension the increasing rate is much smaller under cyclic loading than under static loading.

  • PDF

An Experimental Equation on the Fatigue Crack Growth Rate Behavior (피로 균열 전파 거동에 대한 실험식)

  • Kim, Sang-Chul;Kang, Dong-Myeong;Woo, Chang-Gi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.27-35
    • /
    • 1991
  • We propose the crack growth rate equation which applied over three regions (threshold region, stable region, unstable region) of fatigue crack propagation. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.05, R=0.2 and R=0.4. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. The fatigue crack growth rate equation is given by $da/dN={\beta} (1-R)^{\delta}\({\DELTA}K-{\DELTA}K_t)^{\alpha} / (K_{cf}-K_{max})$${\alpha}, {\beta}$ , and ${\delta}$ are constants, and ${\Delta}K_t$ is stress intensity factor range at low ${\Delta}K$ region. The constants are obtained from nonlinear least square method. $K_{ef}$is critical fatigue stress intensity factor. The relation between half crack length and number of cycles obtained by integrating the crack growth rate equation is in agreement with the experimental data. It is also experimented with constant maximum stress and decreasing stress ratios, and the fatigue growth rate of each material is in accord with the proposed equation.

  • PDF

Fatigue crack growth and crack closure in 2017-T3 Aluminum alloy (2017 - T 3 알미늄 合金 의 勞龜裂進展 과 龜裂닫힘現象)

  • 송지호;김일현;신용승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.4 no.2
    • /
    • pp.47-53
    • /
    • 1980
  • Kikukawa-Compliance method using a conventional clip-on gauge was employed to investigate fatigue crack growth and crack closure in 2017-T3 aluminum alloy. The crack growth rate plot against stress intensity range .DELTA.K on a log-log diagram exhibits a bilinear form with a transition at the growth rate of 10$\^$-4/ mm/cycle. The bilinear form appears still in the plot of growth rate versus effective stress intensity range .DELTA.K$\_$eff/. Fatigue crack growth rate could be well represented by .DELTA.K$\_$eff. The experimental results indicate that the effective stress intensity range ratio U depends on the maximum stress intensity factor K$\_$max/, but the stress ratio R does not affect U. The crack opening stress intensity factor K$\_$op/ tends to increase with increasing K$\_$max/ and decrease with increasing .DELTA.K.

A Study on the Stress Ratio effect of Metal Matrix Composites on Fatigue Crack Growth Behavior (금속기복합재료의 피로균열성장거동에 대한 응력비 영향에 관한 연구)

  • Choi, Yong-Bum;Huh, Sun-Chul;Yoon, Han-Ki;Park, Won-Jo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.155-160
    • /
    • 2002
  • Metal matrix composites had generated a lot of interest in recent times because of significant in specific properties. It was also highlighted as the materials of frontier industry because strength, heat-resistant, corrosion-resistant, wear-resistant were superiored. In this study the strength properties of $Al_{18}B_4O_{33}/AC4CH$ were represented mixing the binder of $Al_2O_3$ and $TiO_2$. It was also fabricated by squeeze casting. $Al_{18}B_4O_{33}/AC4CH$ was fabricated at the melt temperature of $760^{\circ}C$ the perform temperature of $700^{\circ}C$ and mold temperature of $200^{\circ}C$ under the pressure of 83.4MPa and observed SEM. Fatigue crack growth rate tests on compact tension specimen(half-size) of thickness 12.5mm were conducted by using sinusoidal waveform. Compact tension specimens(half-size) were used and fatigue crack growth rate da/dN and stress intensity factor range ${\Delta}K$ were analyzed concerning to the R value of 0.1 and 0.05. In order to find out the value of ${\Delta}K$, load amplitude constant method was applied by the standard fatigue testing method describes in ASTM E647-95a. As the results of this study, Fatigue crack growth rate increased with in creasing the load ratio, Consequently, At equivalent stress intensity factors, the fatigue crack growth rates in MMC were faster than those of AC4CH alloy. then the fatigue life and the fatigue crack growth rate was investigated using scanning election microscopy(SEM)

  • PDF

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(III) - Experimental Evaluation of Crack Arrest Design Chart (보강판의 균열거동해석과 Crack Arrest 설계(III) - Crack Arrest Design 차트의 실험평가)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.42-48
    • /
    • 2006
  • In order to assess the validity of fatigue crack arrest design charts obtained from our previous numerical approach to fatigue crack arrest condition, an extensive fatigue crack growth/arrest test was performed using CT-type integrally stiffened panels. The results are presented as fatigue crack growth rate and non-dimensional crack length relationship, and these are compared with numerically simulated crack growth rates. The measured values of da/dN at the moment of fatigue crack arrest occurred in stiffened panels are good agreement with those numerically simulated crack growth rates.

  • PDF

Fatigue Crack Growth Behavior for Welded Joint of X80 Pipeline Steel

  • Kim, Young-Pyo;Kim, Cheol-Man;Kim, Woo-Sik;Shin, Kwang-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • The fatigue crack growth behavior of high strength X80 pipeline steel was investigated with compact tension specimens that crack growth directions were aligned either parallel or normal to the rolling direction of the pipeline. Also, the fatigue crack growth rates for welded joint of X80 pipeline steel were investigated with compact tension specimens that crack growth directions were aligned either parallel or normal to the welding line. The experimental results indicated the fatigue crack growth behavior was markedly different in three zones, weld metal, heat affected zone and base metal of welded joints. There was a trend toward increment in the fatigue life of weld metal and heat affected zone as compared with the X80 pipeline steel.