• Title/Summary/Keyword: fatigue crack

Search Result 1,963, Processing Time 0.028 seconds

The Influence of the Small Circular Hole Defect on the Fatigue Crack Propagation Behavior in Aluminum Alloys (알루미늄 합금재의 피로크랙 전파거동에 미치는 미소원공결함)

  • Kim, G.H.;Lee, H.Y.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.834-840
    • /
    • 2008
  • We carried out fatigue testing with materials of aluminum alloyC7075-T6, 2024-T4) by rotary bending fatigue tester. We investigated fatigue limit, fatigue crack initiation, fatigue crack propagation behavior and possibility of fatigue life prediction to the different small circular hole defect. The summarized result are as follows; Fatigue limit of the smooth specimens were related tensile strength and yield strength. In case of more large applied stress and small circular hole crack defect, the fatigue crack was grown rapidly. The fatigue crack propagation behavior proceed at according to inclusion. Fatigue crack propagation ratio appeared instability and retardation phenomenon in the first half of fatigue life but appeared stability and replied in the latter half. On other hand, this experimental data of the materials are appeared fatigue life predictability.

Retardation Behavior of Fatigue Crack Growth and Fatigue Life Prediction of Thin Sheet Al 2024-T3 Alloy (박판 Al 2024-T3 합금재료의 피로균열성장지연거동과 피로수명예측)

  • Kim, S.G.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.31-37
    • /
    • 2011
  • Sheet aluminum alloys have been used in manufacturing of machine structures. In fatigue crack propagation behavior of thin sheet aluminum alloys, it is important that fatigue crack growth rate is affected by crack closure phenomenon. In this work, we analyzed the characteristics of fatigue crack propagation behavior in experiment of constant stress condition for thin sheet Al 2024-T3 alloys, and identified the retardation behavior of crack growth by comparing experimental results of thin and thick plate specimen. We attempt to operate the fatigue life estimating process using the fatigue related material constants from referred fatigue crack propagation analysis. And we analyzed the experimental and prediction results of fatigue life of thin sheet aluminum alloy in order to identify the relation between retardation behavior of fatigue crack growth and crack closure phenomenon.

Prediction and Application of Fatigue Life on Characteristics of Fatigue Crack Propagation of Thin Sheet Alloy (박판합금재료의 피로균열 전파특성에 대한 피로수명예측과 활용)

  • Lee, Ouk-Sub;Kim, Seung-Gwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.103-109
    • /
    • 2007
  • In fatigue life prediction, it is important that fatigue life is affected by crack closure phenomenon in thin sheet Al alloy. In this research, we attempt to (1)analyze the characteristics of fatigue crack propagation in constant loading condition for thin sheet Al 2024-T3 alloy which is generally used in transportation structures, (2)identify the crack closure phenomenon in thin sheet comparing experimental results of thin and thick sheet specimen under same fatigue loading condition. In using the fatigue related material constants from these fatigue crack propagation analysis, we attempt to (3)operate the fatigue life estimating process with considering crack closure phenomenon and (4)analyze the experimental and prediction results of fatigue life in thin sheet Al alloy.

Prediction of Fatigue Crack Propagation Life under Constant Amplitude and Overloading Condition (일정진폭 및 과대하중 하에서의 피로 균열 성장 수명 예측)

  • 이억섭;김승권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.113-119
    • /
    • 1998
  • Ship structures and aircraft structures are consisted of thin sheet alloy, so it is very important to understand the characteristics of fatigue crack propagation of that material and to establish the data base. The data for fatigue crack propagation behavior scatter very much even under identical experimental conditions with constant loading. The behavior of fatigue crack propagation under regular and irregular cyclic loadings is known to be highly affected by complicated factors such as plastic zone developed at the vicinity of crack tip and reduction of cross sectional area. In this paper, the controlled stress amplitude and overload fatigue crack propagation tests have been conducted to investigate the effect of varying factors such as plastic zone size near the crack tip and area reduction factor (AF) on the fatigue crack propagation behavior A better simulation of fatigue crack propagation behavior is found to be obtainable by using Wheeler and Willenborg models with AF effect.

  • PDF

Fatigue Crack Growth Analysis of Steel Deckplates Under Bending Stress (휨응력을 받는 바닥강판의 피로균열진전해석)

  • Choi, Jun Hyeok;Kyung, Kab Soo;Choi, Dong Ho;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.4 s.41
    • /
    • pp.409-416
    • /
    • 1999
  • The fatigue crack growth analysis based on the fracture mechanics is useful to the estimation of the fatigue life on welded structures under cyclic loading. The analysis procedure in fatigue crack growth under uniform axial loading is applicable to bending fatigue problem as well. The intent of the present study is to show the procedure for calculating the fatigue crack propagation lifetimes of deckplates under bending stress and to explain the crack growth rates for the two dimensional crack problems. It is shown that the fatigue crack grows at a decreasing rate and the fatigue life depends on the initial crack length and the crack shape. The numerically predicted crack growth agree with the experimental data.

  • PDF

Research for the Evaluation of Corrosion Fatigue Crack Initiation Life (해수환경중 부식피로균열 발생수명 평가에 관한 연구)

  • Kim, Won-Beom;Paik, Jeom-Kee;Yajima, Hiroshi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.417-424
    • /
    • 2007
  • With regard to corrosion fatigue crack initiation life (Nc), it has been treated ambiguously for the member which doesn't have stress concentration area. In this research, in order to clarify the corrosion fatigue crack initiation life (Nc), corrosion fatigue tests were carried out. Reasonable and universal corrosion fatigue crack initiation life (Nc) was defined and corrosion fatigue crack initiation/propagation model was suggested also. As the fatigue crack which emanates from the pit is usually small, accordingly it is treated as a small crack. In addition, the observation of the corrosion fatigue fracture surfaces using SEM was conducted. And the fracture mechanics analysis using an intrinsic crack model was conducted for the treatment of the small crack. Finally, the followings were obtained. When there is no clear stress concentration point which seems to fall into a corrosion fatigue crack initiation life, the significance of the definition and suggestion of the moment of the reasonable and universal corrosion fatigue crack initiation life (Nc), at which the fatigue crack propagation rate becomes faster than the corrosion pit growth rate so that the fatigue crack initiates from the pit and propagates in earnest, has been clarified.

The Influence of Grain Size on the Fatigue Crack Propagation Behavior in the Low Carbon Steel (SM26C) (저탄소강재(SM25C)의 피로크랙 전파거동에 미치는 결정립 크기의 영향)

  • 김건호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • In this study, the rotary bending fatigue test was carried out with low carbon steel(SM25C). The specimens were heat-treated in order to change the grain size, and investigated items are fatigue limit, small crack initiation, fatigue crack propagation behavior and possibility of fatigue life prediction according to the different grain size. The summarized result are as follows ; Fatigue limit of the smooth specimen was dependent upon the grain size. The fatigue crack initiation of the small grain size specimen was delayed more than that of the large grain size specimen. And the small cracks of small grain size specimen were distributed in the narrow region of the main crack circumference contrary to the large grain size specimen. The main crack was grown along the grain boundary having co-alliance with small cracks. The experiment material has quantitatively disclosed the possibility of fatigue life prediction because the fatigue crack propagation behavior is dependent upon the grain size.

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(I) - Numerical Approaches to Crack Arrest Design Chart (보강판의 균열거동해석과 Crack Arrest 설계(I) - Crack Arrest 설계기준의 수치해석)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.43-49
    • /
    • 2005
  • The purpose of a fatigue crack arrest design is to prevent a fatigue fracture of machine and structure resulted from unstable crack growth. In all cases of load transfer to second elements such as stringers, doublers or flanges, crack arrest is possible; arrest occurring when the fatigue crack reaches the second element. In the present work, a numerical analysis was carried out to estimate the effect of shape parameters on fatigue crack growth and arrest behavior of integrally stiffened panels. Based on these results, a set of fatigue crack arrest design chart is presented as "non-dimensional arrest load - thickness ratio" relationship.

  • PDF

The Characteristics of Fatigue Crack Propagation Behavior in Shear Load (전단하중 하의 피로균열 전파거동의 특징)

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.302-307
    • /
    • 2004
  • This paper reviewed characteristics of fatigue crack behavior observed by changing various shapes of initial crack and magnitudes of loading in compact tension shear(CTS) specimen subjected to shear loading. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Meanwhile, the secondary fatigue crack in the low-loading condition which was created in the notch root due to friction on the pre-crack face grew to a main crack. Influenced by the mode II loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. Propagation path of fatigue crack under the shear loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

The Fatigue Behavior of Laser Weldment in Heterogeneous Materials (이종재료 레이저 용접부의 피로거동)

  • 권응관;오택열;곽대순;이종재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.759-764
    • /
    • 1997
  • In this study, Fatigue behavior of laser weldment in heterogeneous materials was investigated. Fatigue strength test and fatigue crack propagation test were performed for specimens with laser weldment in heterogeneous materials, and hardness test was performed. From the fatigue strength test. it was observed that the difference of strength between heterogeneous materials had eflect on crack initiation position and fatigue limit. From the fatigue crack propagation test. it was observed that fatigue behavior of laser weldment in heterogeneous materials is different from that in same materials. The difference of strength between heterogeneous materials and laser weldment had effect on fatigue crack propagation rate.

  • PDF