• 제목/요약/키워드: fatigue behaviors

검색결과 298건 처리시간 0.023초

API 2W Gr.60 강재적용 K-Joint 구조의 피로성능평가 (Fatigue Behavior of K-Joint Structure for API 2W Gr.60 Steel)

  • 임성우;장인화;조철희;박관규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.217-222
    • /
    • 2006
  • Large-scale model tests of welded tubular K-joints were carried out to observe the fatigue behavior of API 2W Gr.60 steel produced by POSCO. The fatigue crack behaviors for various loading conditions were measured and investigated around the critical joint sections. The experimental results have been verified with numerical approaches and also compared with the IIW, DnV RP-C203 and API RP 2A-WSD design curves. The hot spot stress method was applied in the study. The SCF factor for tubular K-joint was also obtained.

  • PDF

원전일차측 환경에서 오스테나이트계 스테인리스강의 환경피로특성 (Environmental Fatigue Behaviors of Austenitic Stainless Steels in the Primary Water Environment of Nuclear Power Plants)

  • 이현배;김호섭;김태순;장창희
    • 한국압력기기공학회 논문집
    • /
    • 제13권2호
    • /
    • pp.19-30
    • /
    • 2017
  • Austenitic Stainless Steels (ASSs) are widely used as structural materials in the pressurized water reactors (PWRs) because of their superior mechanical properties and corrosion resistance. However, it is well known that ASSs are susceptible to the environmental assisted cracking (EAC) such as environmental assisted fatigue (EAF) during the long term operation. There have been extensive tests and researches to understand the extent and the mechanisms of environmental effects. In this paper, the world-wide EAF test results of ASSs are introduced including those of Korean test programs. The suggested EAF mechanisms of ASSs are also discussed. Finally, the areas of further research to resolve the issue of EAF are suggested.

Low Cycle Fatigue Behaviors of Type 316 Stainless Steel in $310^{\circ}C$ Water Environment

  • Kim, Byoung-Koo;Cho, Hyun-Chul;Kim, In-Sup;Jang, Chang-Heui;Jung, Dae-Yul;Byeon, Seong-Cheol
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2005년도 춘계학술발표회
    • /
    • pp.467-468
    • /
    • 2005
  • Low cycle fatigue test results of Type 316 stainless steel in $310^{\circ}C$ water environment can be summarized as follows. 1. Cyclic stress response of Type 316 stainless steel shows negative strain rate sensitivity, primary hardening and secondary hardening. 2. Fatigue life in $310^{\circ}C$ water environment was shorter than fatigue life in room temperature air environment. This was because of water environment and temperature effects.

  • PDF

SUS 321 전자비임 용접부의 피로균열진전거동 (Fatigue Crack Propagation Behavior for Electron Beam Welded Joint of SUS 321)

  • 김재훈
    • 한국안전학회지
    • /
    • 제12권2호
    • /
    • pp.57-64
    • /
    • 1997
  • Fatigue crack propagation behaviors and life prediction for SUS 321 plate and its electron beam weld metal were investigated using compact tension specimens. The larger the stress ratio is, the faster the crack propagates, but the variation of crack propagation rate decreases. The effect of stress ratio is greater in the slow crack propagation area than in the faster one. The crack propagation rate of electron beam weld metal is faster than that of base metal because of hardening, weld defect and residual stress in welding area. The crack propagation rate of transverse weld metal has a lower than that of base metal due to the effect of residual stress, but in the time of passing through welding area, has a higher rate. The crack propagation rate using $\Delta$K$_{eff}$ can be well plotted regardless of stress ratio. The fatigue life prediction method of considering crack closure more exactly predicts fatigue life than conventional one. conventional one.e.

  • PDF

직류전위차법을 이용한 점용접부의 피로수명 평가 (Fatigue Life Evaluation of Spot Weldment Using DCPDM)

  • 유효선;이송인;권일현;안병국
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.58-64
    • /
    • 2001
  • The initiation and propagation lives of fatigue crack were studied for spot weldments composed of cold rolled steel plates(SPC$\times$SPC) and galvanized steel plates(GA$\times$GA) using DC potential drop method(DCPDM). Through the various test results, it was known that the fatigue crack initiation and propagation behaviors in all specimens could be definitely detected by DCPDM. The fatigue crack initiation life( $N_{i}$) detected by DCPDM in SPC$\times$SPC and GA$\times$GA spot weldments increased as the welding current and the nugget diameter( $N_{d}$) increased. The fatigue crack propagation life($\Delta$ $N_{f-i}$) declined as the difference of $N_{i}$ and the fatigue fracture life( $N_{f}$) also increased according to the decrease of fatigue load, $\Delta$P and the increase of nugget diameter. In the same spot weldments, the increase of nugget diameter came to increase fatigue crack propagation life owing to a decrease of stress concentration in front of nugget, especially the increasing extent for GA$\times$GA spot weldment was very high. In the welding current 6kA, $N_{f}$ for GA$\times$GA spot weldment decreased more than that of SPC$\times$SPC specimen due to zinc layer coated in steel plate and undersized nugget diameter. On the other hand, in 8kA and 10kA, the GA$\times$GA spot weldment showed higher $N_{f}$ in spite of lower $N_{i}$, than that of SPC$\times$SPC specimen except 3,000N fatigue load.ue load. load.d.

  • PDF

열성층 및 냉각재 환경이 오스테나이트 배관의 피로수명에 미치는 영향 평가 (Evaluation of Thermal Stratification and Primary Water Environment Effects on Fatigue Life of Austenitic Piping)

  • 최신범;우승완;장윤석;최재붕;김영진;이진호;정해동
    • 대한기계학회논문집A
    • /
    • 제32권8호
    • /
    • pp.660-667
    • /
    • 2008
  • During the last two decades, lots of efforts have been devoted to resolve thermal stratification phenomenon and primary water environment issues. While several effective methods were proposed especially in related to thermally stratified flow analyses and corrosive material resistance experiments, however, lack of details on specific stress and fatigue evaluation make it difficult to quantify structural behaviors. In the present work, effects of the thermal stratification and primary water are numerically examined from a structural integrity point of view. First, a representative austenitic nuclear piping is selected and its stress components at critical locations are calculated in use of four stratified temperature inputs and eight transient conditions. Subsequently, both metal and environmental fatigue usage factors of the piping are determined by manipulating the stress components in accordance with NUREG/CR-5704 as well as ASME B&PV Codes. Key findings from the fatigue evaluation with applicability of pipe and three-dimensional solid finite elements are fully discussed and a recommendation for realistic evaluation is suggested.

작은 표면균열의 성장특성에 의한 수명예측 (A Fatigue Life Prediction by Growth Characteristics of a Small Surface Crack)

  • 서창민;임창순;강용구
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.617-617
    • /
    • 1989
  • This paper deals with a fatigue life prediction of a surface crack based on the experimentally obtained relationship between surface crack length ratio $a/a_{f}$ and cycle ratio $N/N_{f}$ using micro computer. Firstly $a/a_{f}$-$N/N_{f}$ curves obtained from experimental tests, were assumed as three curves UC(the upper limit curve), LC(the lower limit curve) and MC(the middle curve), and these were utilized to predict the fatigue life. Comparing the calculated values which represent the characteristics of crack growth behaviors from the three assumed curves with the experimental ones, it has been found that in the stable crack growth region, they coincide reasonably well each other. And the differences between the fatigue lives obtained from the assumed curves and the experimental fatigue life did not exceed 20%. Using the characteristics of $a/a_{f}$-$N/N_{f}$ curves, it is possible to predict the da/dN-Kmax curves and the S-$N_{f}$ curves.

작은 표면균열의 성장특성에 의한 수명예측 (A Fatigue Life Prediction by Growth Characteristics of a Small Surface Crack)

  • 서창민;임창순;강용구
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.108-117
    • /
    • 1989
  • This paper deals with a fatigue life prediction of a surface crack based on the experimentally obtained relationship between surface crack length ratio $a/a_{f}$ and cycle ratio $N/N_{f}$ using micro computer. Firstly $a/a_{f}$-$N/N_{f}$ curves obtained from experimental tests, were assumed as three curves UC(the upper limit curve), LC(the lower limit curve) and MC(the middle curve), and these were utilized to predict the fatigue life. Comparing the calculated values which represent the characteristics of crack growth behaviors from the three assumed curves with the experimental ones, it has been found that in the stable crack growth region, they coincide reasonably well each other. And the differences between the fatigue lives obtained from the assumed curves and the experimental fatigue life did not exceed 20%. Using the characteristics of $a/a_{f}$-$N/N_{f}$ curves, it is possible to predict the da/dN-Kmax curves and the S-$N_{f}$ curves.

  • PDF

이종알루미늄합금 FSW 접합부의 피로균열진전 특성 (Fatigue Crack Growth Properties of Friction Stir Welded Dissimilar Aluminum Alloys)

  • 이원준;이효재;김형진;박원조
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.37-42
    • /
    • 2013
  • The presence of a crack can increase the local stress or strain, which can cause inelastic deformation and significantly reduce the life of a component or structure. Therefore, in this study, the fatigue crack growth (FCG) behaviors of friction stir welded Al 2024-T3 and Al 7075-T6 specimens were examined, with fatigue cracks growing parallel to the dynamically recrystallized zone at variable ${\Delta}K$ values and an R ratio of 0.3. In addition, the FCG values of the base metal Al 2024-T3 and Al 7075-T6 were tested under the same conditions and parameters as comparative groups. The results showed that compared with the base metal Al 2024 specimen, which had the best fatigue property, the welded specimen had only 88% of the fatigue cycles.

압연강판(壓延鋼板)의 피로균열(被虜龜裂) 전파거동(傳播擧動)에 대(對)한 연구(硏究) (A Study on the Propagation Behaviour of the Fatigue Cracks in Rolled Steel Plates)

  • 강창수
    • 대한조선학회지
    • /
    • 제12권2호
    • /
    • pp.43-58
    • /
    • 1975
  • There are many reports on fatigue crack of metallic materials but most of them relate crack propagation rate to stress intensity factor. The problem of crack propagation is not yet clarified, especially the bridge between micro and macro phenomena In this experiment rotating bending fatigue tests have been carried out with smoothed specimen of rolled steel plates including 0.2% carbon under application of three stress conditions to investigate the slip band and the crack propagation behaviour. The results obtained are as follows; 1) The length of cracks which have grown at initial crack tips can be expressed as follows; $l=Ae^{BNr}$(A,B: constant, $N_r$: cycle ratio) $\frac{dl}{dN}=\frac{AB}{N_f}{\cdot}e^{BNr}$($N_f$:fatigue life) 2) The ratio of slipped grain number to total grain number is $S_f=7{\sigma}-5.6$-5.6{\sigma}_c$($\sigma$: stress amplitude) (${\sigma}_c$: fatigue limit) 3) When the fatigue process transfers from Stage I to Stage II, the crack which propagates into specimen changes its direction from that of the maximum shear stress to the direction of perpendicular to principal stress and this is same in the circumferential direction of specimen. the crack propagation behaviors of both sides of a crack are different each other when they approach to the grain boundary.

  • PDF