• 제목/요약/키워드: fatigue Model

검색결과 1,236건 처리시간 0.024초

전완의 등척성 수축시 최대근지구력시간을 예측하기 위한 동적근피로모델의 평가 (Evaluation of dynamic muscle fatigue model to predict maximum endurance time during forearm isometric contraction)

  • 이기영
    • 한국정보전자통신기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.433-439
    • /
    • 2022
  • 최대근지구력시간(MET, maximum endurance time)을 예측하기 위한 근피로모델은 실험적으로 측정한 MET를 이용하여 구축한 실증적 모델과 생리학적 과정을 수학적으로 표현한 이론적 모델로 나뉜다. 본 연구에서는 전완의 등척성 수축시 MET을 예측하기 위한 이론적 모델인 동적 근피로모델의 예측성 평가를 위하여 실증적 모델과 비교 및 평가하고자 한다. 실험에 참여한 피검자는 40명(남성 20, 여성 20)이며 실증적 모델인 지수모델과 거듭제곱모델 및 이론적 모델인 동적 근피로모델을 이용하여 비교하였다. 평가를 위하여 평균절대치편차(MAD, mean absolute deviation), 상관계수 및 급내상관계수를 구한 결과 동적 근피로모델과 실증적 모델들 사이에 MAD는 3.5%p 이하였으며, 상관계수는 0.93, 급내상관계수는 0.87 이상으로 전완의 등척성 수축시 MET을 예측하기 위한 이론적 모델인 동적 근피로모델이 적합함을 확인하였다.

Fatigue reliability analysis of steel bridge welding member by fracture mechanics method

  • Park, Yeon-Soo;Han, Suk-Yeol;Suh, Byoung-Chul
    • Structural Engineering and Mechanics
    • /
    • 제19권3호
    • /
    • pp.347-359
    • /
    • 2005
  • This paper attempts to develop the analytical model of estimating the fatigue damage using a linear elastic fracture mechanics method. The stress history on a welding member, when a truck passed over a bridge, was defined as a block loading and the crack closure theory was used. These theories explain the influence of a load on a structure. This study undertook an analysis of the stress range frequency considering both dead load stress and crack opening stress. A probability method applied to stress range frequency distribution and the probability distribution parameters of it was obtained by Maximum likelihood Method and Determinant. Monte Carlo Simulation which generates a probability variants (stress range) output failure block loadings. The probability distribution of failure block loadings was acquired by Maximum likelihood Method and Determinant. This can calculate the fatigue reliability preventing the fatigue failure of a welding member. The failure block loading divided by the average daily truck traffic is a predictive remaining life by a day. Fatigue reliability analysis was carried out for the welding member of the bottom flange of a cross beam and the vertical stiffener of a steel box bridge by the proposed model. Results showed that the primary factor effecting failure time was crack opening stress. It was important to decide the crack opening stress for using the proposed model. Also according to the 50% reliability and 90%, 99.9% failure times were indicated.

구조응력 및 핫스팟응력을 이용한 피로수명 평가에 관한 실험적 연구 (An Experimental Study of fatigue Strength of Welded Structures Using Structural Stress and Hot Spot Stress)

  • 강성원;김명현;김석훈;하우일
    • 대한조선학회논문집
    • /
    • 제42권2호
    • /
    • pp.129-135
    • /
    • 2005
  • At present, fatigue design of welded structures is primarily based on a nominal stress or hot spot stress approach with a series of classified weld S-N curves. Although well accepted by major industries, the nominal stress based fatigue design approach is cumbersome in terms of securing a series of S-N curves corresponding to each class of joint types and loading modes. The hot spot stress based fatigue design has a difficulty of finding a proper stress through the global model, the midium size model, and the detail model of ship structure. Also, it is difficult to link proper displacements within three different mesh size models. Recently, the structural stress is proposed as a mesh-size insensitive structural stress definition that gives a stress state at weld toe with relatively large mesh size. However, this method requires an experimental validation in obtaining the fatigue strength of weldments. Therefore, in this study, a series of experiment is performed for various sizes of weldments.

A parametric study on fatigue of a top-tensioned riser subjected to vortex-induced vibrations

  • Kim, Do Kyun;Wong, Eileen Wee Chin;Lekkala, Mala Konda Reddy
    • Structural Monitoring and Maintenance
    • /
    • 제6권4호
    • /
    • pp.365-387
    • /
    • 2019
  • This study aims to provide useful information on the fatigue assessment of a top-tensioned riser (TTR) subjected to vortex-induced vibration (VIV) by performing parametric study. The effects of principal design parameters, i.e., riser diameter, wall thickness, water depth (related to riser length), top tension, current velocity, and shear rate (or shear profile of current) are investigated. To prepare the base model of TTR for parametric studies, three (3) riser modelling techniques in the OrcaFlex were investigated and validated against a reference model by Knardahl (2012). The selected riser model was used to perform parametric studies to investigate the effects of design parameters on the VIV fatigue damage of TTR. From the obtained comparison results of VIV analysis, it was demonstrated that a model with a single line model ending at the lower flex joint (LFJ) and pinned connection with finite rotation stiffness to simulate the LFJ properties at the bottom end of the line model produced acceptable prediction. Moreover, it was suitable for VIV analysis purposes. Findings from parametric studies showed that VIV fatigue damage increased with increasing current velocity, riser outer diameter and water depth, and decreased with increasing shear rate and top tension of riser. With regard to the effects of wall thickness, it was not significant to VIV fatigue damage of TTR. The detailed outcomes were documented with parametric study results.

모델 불확실성을 고려한 레이저 피닝 구조물의 피로 수명 예측 (Fatigue Life Prediction of a Laser Peened Structure Considering Model Uncertainty)

  • 임종빈;박정선
    • 한국항공우주학회지
    • /
    • 제39권12호
    • /
    • pp.1107-1114
    • /
    • 2011
  • 본 논문에서는 레이저 피닝(Laser peening) 구조물에 대한 피로 수명을 예측하였다. 레이저 피닝에 의해 생성된 압축잔류응력(Compressive residual stress)을 계산하기 위해서 유한 요소 시뮬레이션(Finite element simulation)을 수행하였고, 피로 수명 예측 시에 압축잔류응력 효과를 고려하기 위해서 수정된 Goodman 식을 사용하였다. 또한, S-N 선도 모델 불확실성(Model uncertainty)을 고려한 피로 수명 예측을 위해 부가 적응 인자 접근법(Additive adjustment factor approach)을 적용하여 예측된 피로 수명의 신뢰 구간(Reliable bounds)을 결정하였다.

자전거 서스펜션 안장봉에 대한 구조 안정성 해석 (Structural Safety Analysis on Bicycle Suspension Seat Post)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.72-81
    • /
    • 2012
  • This study investigates structural, fatigue and modal analyses at bicycle suspension seat post. When weight is applied to the saddle, models 1 and 2 have the weakest strength at the part connected with saddle. And model 2 is greater total deformation and equivalent stress than model 1. Among the cases of nonuniform fatigue loads at models 1 and 2, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^4MPa$ and the amplitude stress of 0 to $10^4MPa$, the possibility of maximum damage becomes 4%. This stress state can be shown with 5 to 7times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. Model 1 has better impulse relaxation and passenger sensitivity than model 2. The structural result of this study can be effectively utilized with the design of bicycle suspension seat post by investigating prevention and durability against its damage.

철도차량의 바퀴에 대한 구조 해석 (Structural Analysis on the Wheel of Railway Vehicle)

  • 조재웅;한문식
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.451-458
    • /
    • 2012
  • This study aims at the structural analysis with fatigue according to the configuration of railway vehicle wheel. Maximum equivalent stress or deformation is shown at the lower face in contact with wheel and rail. As model B has the maximum stress or deformation which becomes lower than model A, model B is shown to have more durability than model A. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^{11}$ Pa and the amplitude stress of 0 to $10^{10}$ Pa, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of railway vehicle wheel by prevention and durability against its damage.

자동차 방진 고무 부품의 유한요소해석 및 피로수명평가 (Finite Element Analysis and Fatigue Life Evaluation of Automotive Rubber Insulator)

  • 김완두;우창수;한승우
    • Elastomers and Composites
    • /
    • 제33권3호
    • /
    • pp.168-176
    • /
    • 1998
  • 자동차의 고무부품 중의 하나인 스트라트방진고무의 특성 평가를 위하여 유한요소해석과 피로 수명시험을 실시하였다. 유한요소해석에 필요한 변형률에너지함수의 계수를 결정하기 위하여 인장, 압축 및 전단시험을 실시하였으며, 유한요소해석 결과로부터 변형 양성 및 취약 부위를 예측하였다. 부품의 피로수명시험 결과로부터 하중-수명 관계를 얻었으며, 피로파손 부위는 유한요소해석에서 예측된 취약 부위와 잘 일치하였다.

  • PDF

폴리카보네이트(PC)의 가속 피로수명 시험을 위한 시간-온도 호환성 (Time-Temperature Superposition Behavior for Accelerated Fatigue Lifetime Testing of Polycarbonate(PC))

  • 김규호
    • 대한기계학회논문집A
    • /
    • 제30권8호
    • /
    • pp.976-984
    • /
    • 2006
  • Time-temperature superposition has been studied to determine the long-term fatigue life over millions of cycles for glassy polymers. π le superposition is supposed to make an accelerated lifetime testing (ALT) technique possible. Dog-bone shaped specimens made of carbon filled Polycarbonate (PC) were tested under fatigue, based on the stress-lifetime approach (S-N curve). Fatigue-induced localized yield-like deformation is considered as the defect leading to fatigue and its evolution behavior is characterized by a modified energy activation model in which temperature is considered as fatigue acceleration factor. This model allows the reduced time concept to account for effects of different temperature in short-term fatigue data to determine long-term fatigue life through the use of time-temperature superposition that is applicable under a low frequency and isothermal conditions. The experimental results validated that the proposed technique could be a possible method for accelerated lifetime testing (ALT) of time-dependent polymeric materials.

Low cycle fatigue and ratcheting failure behavior of AH32 steel under uniaxial cyclic loading

  • Dong, Qin;Yang, Ping;Xu, Geng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.671-678
    • /
    • 2019
  • In this paper, the low cycle fatigue failure and ratcheting behavior, as well as their interaction of AH32 steel were experimentally investigated under uniaxial cyclic loading. The effects of mean stress, stress amplitude and stress ratio on the low cycle fatigue life and ratcheting strain were discussed. It was found that the ratcheting strain increased while the fatigue life decreased with the increase of mean stress and stress amplitude, and the increasing stress ratio would result in smaller ratcheting and larger fatigue life. Two kinds of failure modes, i.e. low cycle fatigue failure due to crack propagates and ratcheting failure due to large plastic strain will take place respectively. Based on the experimental results, considered the effect of ratcheting on fatigue life, a model with the maximum stress and ratcheting strain rate was proposed. Comparison with the experimental result showed that the new model provided a good prediction for AH32 steel.