• Title/Summary/Keyword: fatigue Model

Search Result 1,236, Processing Time 0.029 seconds

On the Measurement of Residual Stresses in Aluminum Alloy Parts Fabricated by Precision Metal Mold Casting (정밀금형 알루미늄 합금 주물에서의 잔류응력 측정에 관한 연구)

  • Kim, Chae-Hwan;Mun, Su-Dong;Gang, Sin-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2087-2095
    • /
    • 1999
  • One of the main causes of unwanted dimensional changes in precision metal mold casting parts is excessive and irregular residual stresses induced by temperature gradients and plastic deformation in the solidifying shell. Residual stresses can also cause stress cracking, and lower the fatigue life and fracture strength of the casting parts. In the present study, aluminum alloy casting system with metal mold equipped with electrical heating elements and water cooling units was designed and the casting specimens were produced to quantify the effects of different cooling conditions on the development of residual stresses. The layer removal method was used to measure the biaxial residual stresses in casting specimens produced from the experiments. The experimental results agreed with Tien-Richmond's theoretical model for thermal stress development for the solidifying metal plate.

Evaluation of AF type cyclic plasticity models in ratcheting simulation of pressurized elbow pipes under reversed bending

  • Chen, Xiaohui;Gao, Bingjun;Chen, Xu
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.703-753
    • /
    • 2016
  • The ratcheting behavior was studied experimentally for Z2CND18.12N elbow piping under cyclic bending and steady internal pressure. Dozens of cyclic plasticity models for structural ratcheting responses simulations were used in the paper. The four models, namely, Bilinear (BKH), Multilinear (MKIN/KINH), Chaboche (CH3), were already available in the ANSYS finite element package. Advanced cyclic plasticity models, such as, modified Chaboche (CH4), Ohno-Wang, modified Ohno-Wang, Abdel Karim-Ohno and modified Abdel Karim-Ohno, were implemented into ANSYS for simulating the experimental responses. Results from the experimental and simulation studies were presented in order to demonstrate the state of structural ratcheting response simulation by these models. None of the models evaluated perform satisfactorily in simulating circumferential strain ratcheting response. Further, improvement in cyclic plasticity modeling and incorporation of material and structural features, like time-dependent, temperature-dependent, non-proportional, dynamic strain aging, residual stresses and anisotropy of materials in the analysis would be essential for advancement of low-cycle fatigue simulations of structures.

Connection of PDM System and Web-Based CAE Supporting System for Small and Medium Enterprises (중소기업을 위한 제품정보관리 시스템과 웹기반 CAE 지원 시스템의 연동)

  • Bang, Je-Sung;Lee, Jai-Kyung;Han, Seung-Ho;Park, Seong-Whan;Lee, Tae-Hee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.459-468
    • /
    • 2008
  • A web-based Computer-Aided Engineering (CAE) supporting system is connected with a Product Data Management (PDM) system for Small and Medium Enterprises (SMEs) suffering from the lack of building hardware, software and related experts. An analysis of current business models and worksite requirements provides an improved process model and data to be shared between the PDM system and the CAE supporting system. Since all engineering tasks such as geometric modeling, mesh generation, static stress and modal analysis, and fatigue durability analysis are automated in the CAE supporting system, the user in charge of the CAE have only to configure the concerned values of design variables and result data through the web page. The existing Change Management module of the PDM system is modified for seamless data exchange, i.e. sending the Engineering Change Order (ECO) data to the CAE supporting system and receiving the CAE result data bark. The hi-directional data transfers between the PDM system and the CAE supporting system is made possible by adaptors bused on the Simple Object Access Protocol (SOAP). The current approach will be very helpful for SMEs that only have the PDM system and have no adequate infrastructure for CAE.

Safety evaluation of dynamic behavior of Korean tilting train (TTX차량의 동역학적 거동의 안정성 평가)

  • Yoon, Ji-Won;Kim, Nam-Po;Kim, Young-Guk;Kim, Seog-Won;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.194-200
    • /
    • 2007
  • The tilting train is able to tilt its body towards the center of the turning radius, preventing roll-over of the train as it runs on a curved rail at high-speed. This train, widely accepted for commercial purpose internationally is very beneficial in that the operating time is shortened without much capital investment to the infrastructure where there are many curved rails. Over several years, the Korea Railroad Research Institute(KRRI) has developed such a train. In this paper, the safety of the Korean tilting train express(TTX) is investigated using a dynamic simulation model. Since, proper safety standards have not been established for the TTX, those for the Korean train express(KTX) is employed instead to analyze the safety and ride comfort of the TTX. This study will prove useful in predicting the behavior of the TTX and ride comfort, and conforming that designed TTX measures up to the safety standards. It would be useful to recommend proper normal operating speed and determine the maximum safety speed, according to the result. Furthermore, it would be possible to provide basic reference data when analyzing the dynamic effect of the catenary system and the fatigue of the bogie.

  • PDF

Correlates Influencing Cognitive Impairment in Breast Cancer Patients receiving Chemotherapy (화학요법을 받는 유방암 환자의 인지기능장애 관련 요인)

  • Chung, Bok-Yae;Cho, Eun-Jung
    • Asian Oncology Nursing
    • /
    • v.12 no.3
    • /
    • pp.221-229
    • /
    • 2012
  • Purpose: The purpose of this study was to identify correlates influencing cognitive impairment in breast cancer patients receiving chemotherapy. Methods: Study subjects consisted of 102 breast cancer patients who received chemotherapy. Subjects were the members of a breast cancer self-help group. Data were collected using structured self-reporting questionnaires including scales of cognitive impairment, physical status, fatigue, quality of life, emotional status, sleeping, family support, and menopausal symptoms. Statistical Package for Social Sciences was used for statistical analyses. Results: Breast cancer patients receiving chemotherapy appeared to show a high level of cognitive impairment. Among demographic characteristics, the effects of economic status and family type on cognitive impairment were found to be statistically significant. Among disease related characteristics, the effect of duration of chemotherapy on cognitive impairment was statistically significant. Menopausal symptoms were positively associated with cognitive impairment. The model including postmenopausal symptoms and caregiver type explained about 66% of variability in cognitive impairment. Conclusion: These findings highlight the importance of contextual factors in understanding cognitive impairment in breast cancer patients receiving chemotherapy and can be used to develop appropriate, effective nursing interventions.

Stress Analysis of Femoral Stems on Non-Cemented Total Hip Replacement - A Three-Dimensional Finite Element Analysis -

  • Kim, Sung-Kon;Chae, Soo-Won;Jeong, Jung-Hwan
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.263-266
    • /
    • 1997
  • Three dimensional numerical model based on the finite element method(FEM) were developed to predict the mechanical behavior of hip implants. The purpose of this study is to investigate the stress distribution of two types of cementless total hip replacement femoral component -a straight stem and a curved stem, and to compare their effect on the stress shielding between two types by three dimensional finite element method. The authors analyzed von Mises stress in the cortex & stem and compared the stress between the straight and the curved stem. In comparison of stresses between two different design of femoral stem, there was 25% more decrease of stress in straight stem than curved stem in the medial cortex at proximal region. The straight stem had consistently much lower stresses than the curved stem throughout the whole medial cortex with maximum 70% reduction of stress. However, there was little change in stress between nature and 2 implanted femur throughout the lateral cortex. Stress of femoral stem was much higher in the straight stem than the curved stem up to 60%. The straight stem had more chance of stress shielding and a risk of fatigue fracture of the stem compared with the curved stem in noncement hip arthroplasty. In design of femoral stem still we have to consider to develop design to distribute more even stress on the proximal medial cortex.

  • PDF

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Leaking Flow in a T-Branch of Square Cross-Section (난류침투가 사각단면 T분기관 내 누설유동에 의해 발생한 열성층 현상에 미치는 영향)

  • 홍석우;최영돈;박민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.3
    • /
    • pp.239-245
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. $textsc{k}$-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of the main flow in the duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from the main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

Finite Element Analysis of Residual Stress by Cold Expansion Method with Clamping Force in the Plate having Adjacent Holes (인접홀에서 홀확장법과 체결력 고려시, 발생하는 잔류응력 분포에 대한 유한요소해석)

  • Yang Won-Ho;Cho Myoung-Rae;Jang Jae-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.149-154
    • /
    • 2006
  • The cold expansion method (CEM) is one of the widely used a method to improve the fatigue behavior of materials in aerospace industry. Such improvement is due to the compressive residual stress developed when a tapered mandrel goes through the fastener holes a little smaller than the mandrel. CEM is retarded of crack initiation due to the compressive residual stress developed on the hole surface. Many researchers are studied a finite element analysis of residual stress around fastener hole. But in case of real model, fastener hole has a clamping force after CE. Therefore, it is respected that residual stress distributions should be changed due to clamping forces. In this paper, it was performed finite element analysis of residual stress by clamping force after CE in the plate having adjacent holes. From this study, it has been found that compressive residual stress near the hole increases according to clamping force. Also, the more increase clamping force, the more increases compressive residual stress. However, tensile residual stress increase beyond clamping force area.

A Study on Residual Stress Analysis of Autofrettaged Thick-walled Cylinders (자긴가공된 후육실린더의 잔류응력 해석에 관한 연구)

  • Kim, Jae-Hoon;Shim, Woo-Sung;Lee, Young-Shin;Cha, Ki-Up;Hong, Suck-Kyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.110-116
    • /
    • 2009
  • Thick-walled cylinders, such as a cannon or nuclear reactor, are autofrettaged to induce advantageous residual stresses into pressure vessels and to increase operating pressure and the fatigue lifetimes. As the autofrettage level increases, the magnitude of compressive residual stress at the bore also increases. However, the Bauschinger effect reduces the compressive residual stresses as a result of prior tensile plastic strain, and decreases the beneficial autofrettage effect. The purpose of the present paper is to predict the accurate residual stress of SNCM8 high strength steel using the Kendall model which was adopted by ASME Code. The uniaxial Bauschinger effect test was performed to decide BEF, then this constant was used in calculation. There were some differences between theoretical solution and modified solution.

The study of dynamic safety using M&S for Integrated Electro-Mechanical Actuator installed on aircraft (M&S를 이용한 항공기용 통합형 전기식 구동장치의 동적 안전성 연구)

  • Lee, Sock-Kyu;Lee, Byoung-Ho;Lee, Jeung;Kang, Dong-Seok;Choi, Kwan-ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.36-41
    • /
    • 2014
  • Electro-Mechanical Actuator installed on aircraft consists of a decelerator which magnifies the torque to rotate an axis connected with aircraft control surface, a control section which controls the motor assembly through receiving orders from cockpit and a motor assembly which rotates the decelerator. EMA controls aircraft attitued, position, landing, takeoff, etc. It is important part of a aircraft. Aircraft maneuvering make vibration of EMA. Vibration may cause the vibration fatigue. For that reason, it is necessary to analyze the system safety. In this paper, first EMA is modeled in finite element method and analyzed the response from input vibration. second EMA is tested and analyzed from modal experimental data. third EMA Fe model is updated and re analyzed. and EMA is verified safety with $3{\sigma}$ stress and S/N curves.

  • PDF