• Title/Summary/Keyword: fast motion compensation

Search Result 66, Processing Time 0.025 seconds

Robust Motion Compensated Frame Interpolation Using Weight-Overlapped Block Motion Compensation with Variable Block Sizes to Reduce LCD Motion Blurs

  • Lee, Jichan;Choi, Jin Hyuk;Lee, Daeho
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.537-543
    • /
    • 2015
  • Liquid crystal displays (LCDs) have slow responses, so motion blurs are often perceived in fast moving scenes. To reduce this motion blur, we propose a novel method of robust motion compensated frame interpolation (MCFI) based on bidirectional motion estimation (BME) and weight-overlapped block motion compensation (WOBMC) with variable block sizes. In most MCFI methods, a static block size is used, so some block artefacts and motion blurs are observed. However, the proposed method adjusts motion block sizes and search ranges by comparing matching scores, so the precise motion vectors can be estimated in accordance with motions. In the MCFI, overlapping ranges for WOBMC are also determined by adjusted block sizes, so the accurate MCFI can be performed. In the experimental results, the proposed method strongly reduced motion blurs arisen from large motions, and yielded interpolated images with high visual performance and peak signal-to-noise ratio (PSNR).

Fast motion estimation and mode decision for variable block sizes motion compensation in H.264 (H.264의 가변 블록 움직임 보상을 위한 고속 움직임 벡터 탐색 및 모드 결정법)

  • 이제윤;최웅일;전병우;석민수
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.4
    • /
    • pp.275-285
    • /
    • 2003
  • The now video coding standard H.264 employs variable block size motion compensation, multiple references, and quarter-pel motion vector accuracy. These techniques are key features to accomplish higher coding gain, however, at the same time main factors that increase overall computational complexity. Therefore, in order to apply H.264 to many applications, key techniques are requested to improve their speed. For this reason, we propose a fast motion estimation which is suited for variable block size motion communication. In addition, we propose a fast mode decision method to choose the best mode at early stage. Experimental results show the reduction of the number of SAT SATD calculations by a factor of 4.5 and 2.6 times respectively, when we compare the proposed fast motion estimation and the conventional MVFAS $T^{[8-10]}$. Besides, the number of RDcost computations is reduced by about 45%. Therefore, the proposed methods reduces significantly its computational complexity without noticeable coding loss.

An Efficient Video Coding Algorithm Applying Brightness Variation Compensation (밝기변화 보상을 적용한 효율적인 비디오 코딩 알고리즘)

  • Kim Sang-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.287-293
    • /
    • 2004
  • This paper proposes an efficient motion compensation algorithm for video sequences with brightness variations. In the proposed algorithm, the brightness variation parameters are estimated and local motions are compensated. To detect the frame with large brightness variations, we employ the frame classification based on the cross entropy between histograms of two successive frames, which can reduce the computational redundancy. Simulation results show that the proposed method yields a higher peak signal to noise ratio (PSNR) than that of the conventional methods, with a low computational load, when the video scene contains large brightness changes.

  • PDF

Fast Multiple Reference Frame Selection Method for Motion Estimation and Compensation in Video Coding (동영상 부호화의 움직임 추정 및 보상을 위한 고속 다중 참조 프레임 선택 기법)

  • Kim, Jae-Hoon;Kim, Myoung-Jin;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1066-1072
    • /
    • 2007
  • In this paper, we propose a fast multiple reference frame selection method for motion estimation and compensation in video coding. Reference frames selected as an optimal reference frame by variable block sizes motion estimation have the statistical characteristic that was based on block size. Using the statistical characteristic, reference frames for smaller block size motion estimation can be selected from reference frame which was decided as an optimal one for the upper layer block size. Simulation results show that the proposal method decreased the computations about 60%. Nevertheless, PSNR and bit rate were almost same as the performances of original H.264 multiple reference motion estimation.

A Study on Architecture of Motion Compensator for H.264/AVC Encoder (H.264/AVC부호화기용 움직임 보상기의 아키텍처 연구)

  • Kim, Won-Sam;Sonh, Seung-Il;Kang, Min-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.527-533
    • /
    • 2008
  • Motion compensation always produces the principal bottleneck in the real-time high quality video applications. Therefore, a fast dedicated hardware is needed to perform motion compensation in the real-time video applications. In many video encoding methods, the frames are partitioned into blocks of Pixels. In general, motion compensation predicts present block by estimating the motion from previous frame. In motion compensation, the higher pixel accuracy shows the better performance but the computing complexity is increased. In this paper, we studied an architecture of motion compensator suitable for H.264/AVC encoder that supports quarter-pixel accuracy. The designed motion compensator increases the throughput using transpose array and 3 6-tap Luma filters and efficiently reduces the memory access. The motion compensator is described in VHDL and synthesized in Xilinx ISE and verified using Modelsim_6.1i. Our motion compensator uses 36-tap filters only and performs in 640 clock-cycle per macro block. The motion compensator proposed in this paper is suitable to the areas that require the real-time video processing.

Hardware Implementation of a Fast Inter Prediction Engine for MPEG-4 AVC (MPEG-4 AVC를 위한 고속 인터 예측기의 하드웨어 구현)

  • Lim Young hun;Lee Dae joon;Jeong Yong jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.102-111
    • /
    • 2005
  • In this paper, we propose an advanced hardware architecture for the fast inter prediction engine of the video coding standard MPEG-4 AVC. We describe the algorithm and derive the hardware architecture emphasizing and real time operation of the quarter_pel based motion estimation. The fast inter prediction engine is composed of block segmentation, motion estimation, motion compensation, and the fast quarter_pel calculator. The proposed architecture has been verified by ARM-interfaced emulation board using Excalibur & Virtex2 FPGA, and also by synthesis on Samsung 0.18 um CMOS technology. The synthesis result shows that the proposed hardware can operate at 62.5MHz. In this case, it can process about 88 QCIF video frames per second. The hardware is being used as a core module when implementing a complete MPEG-4 AVC video encoder chip for real-time multimedia application.

Development of the Straightness Compensation System for Ultra-Precision Machine Using DSP (DSP를 이용한 초정밀가공기용 진직도 보상시스템 개발)

  • 이대희;이종호;김호상;민흥기;김민기;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.283-286
    • /
    • 2002
  • This paper presents the straightness compensation system which is a device for improving the machining accuracy of ultra-precision machines by synchronizing the position of diamond tool tip with machine error motion. Sine it is actuated by piezoelectric actuator with highly nonlinear hysteresis characteristics, the feedback control schemes such as Proportional Integral(PI), are required and realized by measuring the displacements of diamond tool tip. for the better tracking performance, the controller was implemented using TMS320C32 32bit floating-point DSP which is fast so that the real-time control is possible. In addition, stand alone type DSP board was chosen fur the easy assembly into the ultra-precision machines. The experimental results show good command tracking performance and the motion error of the machine is satisfactorily compensated during the machining process.

  • PDF

Fast Motion Estimation using Adaptive Search Region Prediction (적응적 탐색 영역 예측을 이용한 고속 움직임 추정)

  • Ryu, Kwon-Yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1187-1192
    • /
    • 2008
  • This paper proposes a fast motion estimation using an adaptive search region and a new three step search. The proposed method improved in the quality of motion compensation image as $0.43dB{\sim}2.19dB$, according as it predict motion of current block from motion vector of neigher blocks, and adaptively set up search region using predicted motion information. We show that the proposed method applied a new three step search pattern is able to fast motion estimation, according as it reduce computational complexity per blocks as $1.3%{\sim}1.9%$ than conventional method.

Performance Improvement of Motion Compensation using Motion Vector Segmentation (움직임 벡터 분할을 이용한 움직임 보상 성능 개선)

  • 채종길;곽성일;황찬식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.77-88
    • /
    • 1995
  • It is assumed in the block matching algorithm(BMA) that all the pels in a block have a same motion vector. Then, the motion vector of a block in the BMA is matched to only one or none of the objects in the worst case if objects in a block have different motion vectors. This is apparent in the motion estimation using the fast BMA which has the effect of reducing the computation time and hardware complexity, compared to the full search BMA. Although the motion vector in the motion estimation using small block size is accurate, the increased number of bits is required to represent motion vectors. In this paper, new motion vector segmentation with less additional information and hardware complexity than the conventional method is proposed. In the proposed method, a motion vector is derived from the block for motion vector segmentation and another motion vector is extracted from four neighboring blocks to consiture a motion vector pair. For the accurate motion vector of each subblock, the motion vector is assigned to each subblock by mean squared error measure. And the overlapped motion compensation using window is also applied to reduce displaced frame difference.

  • PDF

Fast Affine Motion Estimation Method for Versatile Video Coding (다목적 비디오 부호화를 위한 고속 어파인 움직임 예측 방법)

  • Jung, Seong-Won;Jun, Dong-San
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.707-714
    • /
    • 2022
  • Versatile Video Coding (VVC) is the most recent video coding standard, which had been developed by Joint Video Expert Team (JVET). It can improve significant coding performance compared to the previous standard, namely High Efficiency Video Coding (HEVC). Although VVC can achieve the powerful coding performance, it requires the tremendous computational complexity of VVC encoder. Especially, affine motion compensation (AMC) was adopted the block-based 4-parameter or 6-parameter affine prediction to overcome the limit of translational motion model while VVC require the cost of higher encoding complexity. In this paper, we proposed the early termination of AMC that determines whether the affine motion estimation for AMC is performed or not. Experimental results showed that the proposed method reduced the encoding complexity of affine motion estimation (AME) up to 16% compared to the VVC Test Model 17 (VTM17).