• Title/Summary/Keyword: fast encoding

Search Result 319, Processing Time 0.028 seconds

Fast Motion Estimation Using Adaptive Search Range for HEVC (적응적 탐색 영역을 이용한 HEVC 고속 움직임 탐색 방법)

  • Lee, Hoyoung;Shim, Huik Jae;Park, Younghyeon;Jeon, Byeungwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.4
    • /
    • pp.209-211
    • /
    • 2014
  • This paper proposes a fast motion estimation method which can reduce the computational complexity of HEVC encoding process. While the previous method determines its search range based on a distance between a current and a reference pictures to accelerate the time-consuming motion estimation, the proposed method adaptively sets the search range according to motion vector difference between prediction units. Experimental results show that the proposed method achieves about 10.7% of reduction in processing time of motion estimation under the random access configuration whereas its coding efficiency loss is less than 0.1%.

Fast I Slice Encoding/Decoding Method in H.264/AVC (H.264/AVC에서 고속 I Slice 부호화/복호화 방법)

  • Oh, Hyung-Suk;Shin, Dong-In;Kim, Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • This paper develops a fast method performing intra prediction which only restores block boundary pixels without decoding all blocks in an I slice of H.264/AVC. To accomplish this, we develop a fast integer inverse DCT scheme that quickly decodes residual block boundary which can be consisted of references pixels. we add the restored block boundary pixels and appropriate calculated prediction pixels for each intra prediction mode and consist of needed reference pixels. The experiments showed that the proposed method produces the reliable performance with reducing the computational complexity, compared to conventional method when applied to H.264/AVC integer DCT.

Fast Mode Decision Algorithm for H.264 using Mode Classification (H.264 표준에서 모드 분류를 이용한 고속 모드결정 방법)

  • Kim, Hee-Soon;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.88-96
    • /
    • 2007
  • H.264 is a new international video coding standard that can achieve considerably higher coding efficiency than conventional standards. Its coding gain has been achieved by employing advanced video coding methods. Specially, the increased number of macroblock modes and the complex mode decision procedure using the Lagrangian optimization are the main factors for increasing coding efficiency. Although H.264 obtains improved coding efficiency, it is difficult to do an real-time encoding because it considers all coding parameters in the mode decision procedure. In this paper, we propose a fast mode decision algorithm which classifies the macroblock modes in order to determine the optimal mode having low complexity quickly. Simulation results show that the proposed algorithm can reduce the encoding time by 34.95% on average without significant PSNR degradation or bit-rate increment. In addition, in order to show the validity of simulation results, we set up a low boundary condition for coding efficiency and complexity and show that the proposed algorithm satisfies the low boundary condition.

Bayesian-theory-based Fast CU Size and Mode Decision Algorithm for 3D-HEVC Depth Video Inter-coding

  • Chen, Fen;Liu, Sheng;Peng, Zongju;Hu, Qingqing;Jiang, Gangyi;Yu, Mei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1730-1747
    • /
    • 2018
  • Multi-view video plus depth (MVD) is a mainstream format of 3D scene representation in free viewpoint video systems. The advanced 3D extension of the high efficiency video coding (3D-HEVC) standard introduces new prediction tools to improve the coding performance of depth video. However, the depth video in 3D-HEVC is time consuming. To reduce the complexity of the depth video inter coding, we propose a fast coding unit (CU) size and mode decision algorithm. First, an off-line trained Bayesian model is built which the feature vector contains the depth levels of the corresponding spatial, temporal, and inter-component (texture-depth) neighboring largest CUs (LCUs). Then, the model is used to predict the depth level of the current LCU, and terminate the CU recursive splitting process. Finally, the CU mode search process is early terminated by making use of the mode correlation of spatial, inter-component (texture-depth), and inter-view neighboring CUs. Compared to the 3D-HEVC reference software HTM-10.0, the proposed algorithm reduces the encoding time of depth video and the total encoding time by 65.03% and 41.04% on average, respectively, with negligible quality degradation of the synthesized virtual view.

Scheme for Reducing HEVC Intra Coding Complexity Considering Video Resolution and Quantization Parameter (비디오 해상도 및 양자화 파라미터를 고려한 HEVC의 화면내 부호화 복잡도 감소 기법)

  • Lee, Hong-Rae;Seo, Kwang-Deok
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.836-846
    • /
    • 2014
  • To expedite UHD (Ultra High Definition) video service, the HEVC (High-Efficiency Video Coding) technology has recently been standardized and it achieves two times higher compression efficiency than the conventional H.264/AVC. To obtain the improved efficiency, however, it employs many complex methods which need complicated calculation, thereby resulting in a significantly increased computational complexity when compared to that of H.264/AVC. For example, to improve the coding efficiency of intra frame coding, up to 35 intra prediction modes are defined in HEVC, but this results in an increased encoding time than the H.264/AVC. In this paper, we propose a fast intra prediction mode decision scheme which reduces computational complexity by changing the number of intra prediction mode in accordance with the percentage of PU sizes for a given video resolution, and by classifying the 35 intra prediction modes into 4 categories considering video resolution and quantization parameter. The experimental results show that the total encoding time is reduced by about 7% on average at the cost of only 2% increase in BD-rate.

An Efficient Mode Decision Method for Fast Intra Encoding in the SVC Enhancement Layer (SVC 향상 계층의 빠른 인트라 부호화를 위한 효율적인 모드 결정 방법)

  • Cho, Mi-Sook;Kang, Jin-Mi;Chung, Ki-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.872-883
    • /
    • 2011
  • SVC is an emerging video coding standard as an extension of H.264/AVC. This standard uses inter prediction, intra prediction and a new inter-layer prediction to improve coding performance of enhancement layers. However, it has high computational complexity. In this paper, we propose an efficient intra prediction mode decision method in the spatial enhancement layer to reduce the computational complexity. The proposed method consists of two phases. In the first phase, Intra_BL mode is selected using the RD cost of Intra_BL in advance. We exploit the fact that the RD cost and prediction mode are similar to those of neighbor macroblocks. In the second phase, we predict the enhancement layer mode using correlation between intra mode of enhancement layer and that of the base layer. Experimental results show that the proposed method could save from 48.15% to 56.32% in encoding time while degradation in video quality is negligible.

Fast Motion Estimation Algorithm for Efficient MPEG-2 Video Transcoding with Scan Format Conversion (스캔 포맷 변환이 있는 효율적인 MPEG-2 동영상 트랜스코딩을 위한 고속 움직임 추정 기법)

  • 송병철;천강욱
    • Journal of Broadcast Engineering
    • /
    • v.8 no.3
    • /
    • pp.288-296
    • /
    • 2003
  • ATSC (Advanced Television System Committee) has specified 18 video formats for DTV (Digital Television), e.g., scan format, size format, and frame rate format conversion. Effective MPEG-2 video transcoders should support any conversion between the above-mentioned formats. Scan format conversion Is hard to Implement because it may often induce frame rate and size format conversion together. Especially. because of picture type conversion caused by scan format conversion, the computational burden of motion estimation (ME) in transcoding becomes serious. This paper proposes a fast ME algorithm for MPEG-2 video transcoding supporting scan format conversion. Firstly, we extract and compose a set of candidate motion vectors (MVs) from the input bit-stream to comply with the re-encoding format. Secondly, the best MV is chosen among several candidate MVs by using a weighted median selector. Simulation results show that the proposed ME algorithm provides outstanding PSNR performance close to full search ME, while reducing the transcoding complexity significantly.

Fast Mode Decision for Spatial Transcoding of H.264/AVC Contents (H.264/AVC 컨텐츠의 공간해상도 트랜스코딩을 위한 고속 모드 결정 방법)

  • Kwon Sang-Gu;Jung Bong-Soo;Jeon Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.43-53
    • /
    • 2006
  • As wireless network technology has advanced, demands for multimedia contents through mobile environment have tendered to upward. Since network situation is changing every moment and types of user terminals are diverse, it is difficult for a content provider to consider network situation and type of user terminal to provide multimedia contents. As one solution, transcoding techniques have been proposed, but those have much complexity. In this paper, in order to reduce computational complexity, we propose a fast mode decision using input modes, motion vectors, and residual energies which are obtained from input bitstream for 2:1 down-scaling spatial transcoding application. The proposed method reduces processing time in mode decision by restricting possible mode types based on input information. Experimental results show that the proposed method achieves about 2.66 times improvement in encoding time compared to the normal encoding process while the PSNR is degraded by about 0.04dB, and bit-rate is increased by 1.6%.

An Algorithm with Low Complexity for Fast Motion Estimation in Digital Video Coding (디지털 비디오 부호화에서의 고속 움직임 추정을 위한 저복잡도 알고리즘)

  • Lee, Seung-Chul;Kim, Min-Ki;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1232-1239
    • /
    • 2006
  • In video standards such as MPEG-1/2/4 and H.264/AVC, motion estimation / compensation(ME/MC) process causes the most encoding complexity of video encoder. The full search method, which is used in general video codecs, exhausts much encoding time because it compares current macroblock with those at all positions within search window for searching a matched block. For the alleviation of this problem, the fast search methods such as TSS, NTSS, DS and HEXBS are exploited at first. Thereafter, DS based MVFAST, PMVFAST, MAS and FAME, which utilize temporal or spacial correlation characteristics of motion vectors, are developed. But there remain the problems of image quality degradation and algorithm complexity increase. In this thesis, the proposed algorithm maximizes search speed and minimizes the degradation of image quality by determining initial search point correctly and using simple one-dimension search patterns considering motion characteristics of each frame.

Statistical Characteristics and Complexity Analysis of HEVC Encoder Software (HEVC 부호화기 소프트웨어의 통계적 특성 및 복잡도 분석)

  • Ahn, Yongjo;Hwang, Taejin;Yoo, Sungeun;Han, Woo-Jin;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.1091-1105
    • /
    • 2012
  • In this paper, we analyzed statistical characteristics and complexity of HEVC encoder as a leading research of acceleration, optimization and parallelization. Computational complexity of the HEVC encoder is approximately twice the compression performance compared to H.264/AVC. But, the increase of encoder complexity remains a problem to be solved in the future. Before performing the research on acceleration, optimization and parallelization to reduce high complexity of HEVC encoder, we measure the complexity each module for HEVC encoder using it's reference software HM 7.1. We also measured the predicted complexity of fast HEVC encoder software, used in real applications, using HM 7.1 applying fast encoding method. The complexity is measured in terms of the operating cycle of the encoder software under the common test sequences and conditions in the Windows PC environment. In addition, we analyze statistical characteristics of HEVC encoder software according to encoding structures and limitation using coded bitstreams.