• Title/Summary/Keyword: fast acquisition

Search Result 268, Processing Time 0.031 seconds

Fast Sequential Bundle Adjustment Algorithm for Real-time High-Precision Image Georeferencing (실시간 고정밀 영상 지오레퍼런싱을 위한 고속 연속 번들 조정 알고리즘)

  • Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.2
    • /
    • pp.183-195
    • /
    • 2013
  • Real-time high-precision image georeferencing is important for the realization of image based precise navigation or sophisticated augmented reality. In general, high-precision image georeferencing can be achieved using the conventional simultaneous bundle adjustment algorithm, which can be performed only as post-processing due to its processing time. The recently proposed sequential bundle adjustment algorithm can rapidly produce the results of the similar accuracy and thus opens a possibility of real-time processing. However, since the processing time still increases linearly according to the number of images, if the number of images are too large, its real-time processing is not guaranteed. Based on this algorithm, we propose a modified fast algorithm, the processing time of which is maintained within a limit regardless of the number of images. Since the proposed algorithm considers only the existing images of high correlation with the newly acquired image, it can not only maintain the processing time but also produce accurate results. We applied the proposed algorithm to the images acquired with 1Hz. It is found that the processing time is about 0.02 seconds at the acquisition time of each image in average and the accuracy is about ${\pm}5$ cm on the ground point coordinates in comparison with the results of the conventional simultaneous bundle adjustment algorithm. If this algorithm is converged with a fast image matching algorithm of high reliability, it enables high precision real-time georeferencing of the moving images acquired from a smartphone or UAV by complementing the performance of position and attitude sensors mounted together.

Simulation and Measurement of Signal Intensity for Various Tissues near Bone Interface in 2D and 3D Neurological MR Images (2차원과 3차원 신경계 자기공명영상에서 뼈 주위에 있는 여러 조직의 신호세기 계산 및 측정)

  • Yoo, Done-Sik
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.33-40
    • /
    • 1999
  • Purpose: To simulate and measure the signal intensity of various tissues near bone interface in 2D and 3D neurological MR images. Materials and Methods: In neurological proton density (PD) weighted images, every component in the head including cerebrospinal fluid (CSF), muscle and scalp, with the exception of bone, are visualised. It is possible to acquire images in 2D or 3D. A 2D fast spin-echo (FSE) sequence is chosen for the 2D acquisition and a 3D gradient-echo (GE) sequence is chosen for the 3D acquisition. To find out the signal intensities of CSF, muscle and fat (or scalp) for the 2D spin-echo(SE) and 3D gradient-echo (GE) imaging sequences, the theoretical signal intensities for 2D SE and 3D GE were calculated. For the 2D fast spin-echo (FSE) sequence, to produce the PD weighted image, long TR (4000 ms) and short TE$_{eff}$ (22 ms) were employed. For the 3D GE sequence, low flip angle (8$^{\circ}$) with short TR (35 ms) and short TE (3 ms) was used to produce the PD weighted contrast. Results: The 2D FSE sequence has CSF, muscle and scalp with superior image contrast and SNR of 39 - 57 while the 3D GE sequence has CSF, muscle and scalp with broadly similar image contrast and SNR of 26 - 33. SNR in the FSE image were better than those in the GE image and the skull edges appeared very clearly in the FSE image due to the edge enhancement effect in the FSE sequence. Furthermore, the contrast between CSF, muscle and scalp in the 2D FSE image was significantly better than in the 3D GE image, due to the strong signal intensities (or SNR) from CSF, muscle and scalp and enhanced edges of CSF. Conclusion: The signal intensity of various tissues near bone interface in neurological MR images has been simulated and measured. Both the simulation and imaging of the 2D SE and 3D GE sequences have CSF, fat and muscle with broadly similar image intensity and SNR's and have succeeded in getting all tissues about the same signal. However, in the 2D FSE sequence, image contrast between CSF, muscle and scalp was good and SNR was relatively high, imaging time was relatively short.

  • PDF

Evaluation of Image Quality for 2D TSE(RT) and 3D GRASE in MRCP Study: Fast MRCP Method (췌담관자기공명영상에서 2D TSE(RT)와 3D GRASE(BH) 기법에 대한 영상의 질 평가 : Fast MRCP 기법)

  • Goo, Eun-Hoe
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.983-989
    • /
    • 2021
  • In this study, we intend to evaluate image quality and provide to clinical basic data by applying to 2D TSE (RT) and 3D GRASE (BH) techniques using Fast MRCP testing methods for application to patients in poor patient condition. Data were analyzed for 30 patients (15 males, 15 females, and 64±4.26 average age) who underwent MRCP tests. The equipment used was Ingenia CX 3.0 T equipment and Ds anterior coil was used for data acquisition. SNR and CNR of each image were measured through quantitative analysis, and the quality of the image was evaluated by dividing it into 5 grades for qualitative evaluation. The image evaluation was performed on the paired t-test and the Wilcoxon test, and when the p value was 0.05 or less, it was considered to be significant. As a result of quantitative analysis of SNR and CNR, 3D GRASE (BH) was measured high when comparing the two techniques, 2D TSE (RT) MRCP and 3D GRASE (BH) (p<0.05). The qualitative analysis result is a sharpness of the bile duct: 3D GRASE(BH): 4.12±0.03, Overall image quality: 3D GRASE(BH): 4.21±0.91 was high (p=0.001). The motion artifact of the bile duct showed no significant difference with two techniques(2D TSE(RT): 4.41±0.04, 3D GRASE(BH): 4.53±0.14(p=0.067). However, the background suppression obtained significant results with 2D TSE(RT) of 4.14±0.55(p=0.001). In conclusion, as a result of using the Fast MRCP testing method, MRCP images obtained by 3D GRASE (BH) had an advantage over MRCP images using 2D TSE (RT). However, there will be useful results of 2D TSE(RT) MRCP technique in patients who have difficulty holding their breath.

Study of Motion Effects in Cartesian and Spiral Parallel MRI Using Computer Simulation (컴퓨터 시뮬레이션을 이용한 직각좌표 및 나선주사 방식의 병렬 자기공명 영상에서 움직임 효과 연구)

  • Park, Sue-Kyeong;Ahn, Chang-Beom;Sim, Dong-Gyu;Park, Ho-Chong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2008
  • Purpose : Motion effects in parallel magnetic resonance imaging (MRI) are investigated. Parallel MRI is known to be robust to motion due to its reduced acquisition time. However, if there are some involuntary motions such as heart or respiratory motions involved during the acquisition of the parallel MRI, motion artifacts would be even worse than those in conventional (non-parallel) MRI. In this paper, we defined several types of motions, and their effects in parallel MRI are investigated in comparisons with conventional MRI. Materials and Methods : In order to investigate motion effects in parallel MRI, 5 types of motions are considered. Type-1 and 2 are periodic motions with different amplitudes and periods. Type-3 and 4 are segment-based linear motions, where they are stationary during the segment. Type-5 is a uniform random motion. For the simulation, Cartesian and spiral grid based parallel and non-parallel (conventional) MRI are used. Results : Based on the motions defined, moving artifacts in the parallel and non-parallel MRI are investigated. From the simulation, non-parallel MRI shows smaller root mean square error (RMSE) values than the parallel MRI for the periodic (type-1 and 2) motions. Parallel MRI shows less motion artifacts for linear(type-3 and 4) motions where motions are reduced with shorter acquisition time. Similar motion artifacts are observed for the random motion (type-5). Conclusion : In this paper, we simulate the motion effects in parallel MRI. Parallel MRI is effective in the reduction of motion artifacts when motion is reduced by the shorter acquisition time. However, conventional MRI shows better image quality than the parallel MRI when fast periodic motions are involved.

  • PDF

Comparison of Effectiveness about Image Quality and Scan Time According to Reconstruction Method in Bone SPECT (영상 재구성 방법에 따른 Bone SPECT 영상의 질과 검사시간에 대한 실효성 비교)

  • Kim, Woo-Hyun;Jung, Woo-Young;Lee, Ju-Young;Ryu, Jae-Kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • Purpose: Nowadays in the nuclear medicine, many studies and efforts are being made to reduce the scan time, as well as the waiting time to be needed to execute exams after injection of radionuclide medicines. Several methods are being used in clinic, such as developing new radionuclide compounds that enable to be absorbed into target organs more quickly and reducing acquisition scan time by increase the number of Gamma Camera detectors to examine. Each medical equipment manufacturer has improved the imaging process techniques to reduce scan time. In this paper, we tried to analyze the difference of image quality between FBP, 3D OSEM reconstruction methods that commercialized and being clinically applied, and Astonish reconstruction method (A kind of Iterative fast reconstruction method of Philips), also difference of image quality on scan time. Material and Methods: We investigated in 32 patients that examined the Bone SPECT from June to July 2008 at department of nuclear medicine, ASAN Medical Center in Seoul. 40sec/frame and 20sec/frame images were acquired that using Philips‘ PRECEDENCE 16 Gamma Camera and then reconstructed those images by using the Astonish (Philips’ Reconstruction Method), 3D OSEM and FBP methods. The blinded test was performed to the clinical interpreting physicians with all images analyzed by each reconstruction method for qualitative analysis. And we analyzed target to non target ratio by draws lesions as the center of disease for quantitative analysis. At this time, each image was analyzed with same location and size of ROI. Results: In a qualitative analysis, there was no significant difference by acquisition time changes in image quality. In a quantitative analysis, the images reconstructed Astonish method showed good quality due to better sharpness and distinguish sharply between lesions and peripheral lesions. After measuring each mean value and standard deviation value of target to non target ratio with 40 sec/frame and 20sec/frame images, those values are Astonish (40 sec-$13.91{\pm}5.62$ : 20 sec-$13.88{\pm}5.92$), 3D OSEM (40 sec-$10.60{\pm}3.55$ : 20 sec-$10.55{\pm}3.64$), FBP (40 sec-$8.30{\pm}4.44$ : 20 sec-$8.19{\pm}4.20$). We analyzed target to non target ratio from 20 sec and 40 sec images. And we analyzed the result, In Astonish (t=0.16, p=0.872), 3D OSEM (t=0.51, p=0.610), FBP (t=0.73, p=0.469) methods, there was no significant difference statistically by acquisition time change in image quality. But FBP indicates no statistical differences while some images indicate difference between 40 sec/frame and 20 sec/frame images by various factors. Conclusions: In the circumstance, try to find a solution to reduce nuclear medicine scan time, the development of nuclear medicine equipment hardware has decreased while software has marched forward at a relentless. Due to development of computer hardware, the image reconstruction time was reduced and the expanded capacity to restore enables iterative methods that couldn't be performed before due to technical limits. As imaging process technique developed, it reduced scan time and we could observe that image quality keep similar level. While keeping exam quality and reducing scan time can induce the reduction of patient's pain and sensory waiting time, also accessibility of nuclear medicine exam will be improved and it provide better service to patients and clinical physician who order exams. Consequently, those things make the image of department of nuclear medicine be improved. Concurrent Imaging - A new function that setting up each image acquisition parameter and enables to acquire images simultaneously with various parameters to once examine.

  • PDF

A Study on the Utilization of Drone for the Management of Island Areas in Marine National Park - Focusing on Drone Type and Arrivals in Island - (해상국립공원 도서지역 관리를 위한 드론의 활용에 관한 연구 - 드론 유형과 입도객 파악을 중심으로 -)

  • KANG, Byeong-Seun;SONG, Cheol-Min;HAN, Gab-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.12-25
    • /
    • 2020
  • The purpose of this study was to obtain information about the type of drones suitable for the management of entrants and entrants of islands in the marine national park. The research sites were 25 islands in the Hallyeohaesang National Park. The target islands were divided into three zones, and were investigated with different types of drones. The survey period was from October to November, 2019. As a result of the operation of drone airframe, drone with fixed wings was found to be favorable for the management of marine parks in medium and long distances compared to other types, but stopping flights for broadcasting was found to be unsuitable. Drone with rotational wings was found to be suitable for image acquisition and broadcasting through close flight. However, it was deemed suitable for short and medium distance flights because of the fast battery consumption. In the case of helicopter rotorcraft drone, image acquisition and broadcasting were possible, but noise and vibration caused by propellers were disadvantageous. The number of entrants to the islands totaled 410 and the main act was fishing. The proportion of entrants to the islands in Area A was higher than that of other areas, and thus it was deemed more necessary to manage the area. Broadcasting was found to have had a positive effect on the management of fishers.

Utilization Evaluation of Digital Surface Model by UAV for Reconnaissance Survey of Construction Project (건설공사 현황측량을 위한 UAV DSM의 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.155-160
    • /
    • 2018
  • The unmanned aerial vehicle (UAV) is used in various fields, such as land surveying, facility management, and disaster monitoring and restoration because it has low operational costs, fast data acquisition, and can generate a digital surface model (DSM). Recently, the UAV has been applied to process management in construction projects. Construction projects are widely distributed not only in urban areas but also in mountainous areas and rural areas where people are rarely in traffic or in vehicles. Projects range from a few hundred meters to several kilometers long. In order to perform a reconnaissance survey, a surveying method using a global positioning system (GPS) or a total station has mainly been used. However, these methods have a disadvantage in that a lot of time is required for data acquisition. This study's purpose is to evaluate the usability of a UAV DSM for surveying a construction area. Data was acquired using the UAV and a three-dimensional (3D) laser scanner, and the DSM of the construction site was created through data processing. The UAV DSM showed accuracy to within 30 cm based on the 3D laser scanner data, and a process comparison between the two work methods was able to present the usability of the UAV DSM in the field of construction surveying. Future utilization of the UAV DSM is expected to greatly improve the efficiency of work in construction projects.

A New Method for Aortic Valve Planimetry with High-Resolution 3-Dimensional MRI and Its Comparison with Conventional Cine MRI and Echocardiography for Assessing the Severity of Aortic Valvular Stenosis

  • Hae Jin Kim;Yeon Hyeon Choe;Sung Mok Kim;Eun Kyung Kim;Mirae Lee;Sung-Ji Park;Joonghyun Ahn;Keumhee C. Carriere
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1266-1278
    • /
    • 2021
  • Objective: We aimed to compare the aortic valve area (AVA) calculated using fast high-resolution three-dimensional (3D) magnetic resonance (MR) image acquisition with that of the conventional two-dimensional (2D) cine MR technique. Materials and Methods: We included 139 consecutive patients (mean age ± standard deviation [SD], 68.5 ± 9.4 years) with aortic valvular stenosis (AS) and 21 asymptomatic controls (52.3 ± 14.2 years). High-resolution T2-prepared 3D steady-state free precession (SSFP) images (2.0 mm slice thickness, 10 contiguous slices) for 3D planimetry (3DP) were acquired with a single breath hold during mid-systole. 2D SSFP cine MR images (6.0 mm slice thickness) for 2D planimetry (2DP) were also obtained at three aortic valve levels. The calculations for the effective AVA based on the MR images were compared with the transthoracic echocardiographic (TTE) measurements using the continuity equation. Results: The mean AVA ± SD derived by 3DP, 2DP, and TTE in the AS group were 0.81 ± 0.26 cm2, 0.82 ± 0.34 cm2, and 0.80 ± 0.26 cm2, respectively (p = 0.366). The intra-observer agreement was higher for 3DP than 2DP in one observer: intraclass correlation coefficient (ICC) of 0.95 (95% confidence interval [CI], 0.94-0.97) and 0.87 (95% CI, 0.82-0.91), respectively, for observer 1 and 0.97 (95% CI, 0.96-0.98) and 0.98 (95% CI, 0.97-0.99), respectively, for observer 2. Inter-observer agreement was similar between 3DP and 2DP, with the ICC of 0.92 (95% CI, 0.89-0.94) and 0.91 (95% CI, 0.88-0.93), respectively. 3DP-derived AVA showed a slightly higher agreement with AVA measured by TTE than the 2DP-derived AVA, with the ICC of 0.87 (95% CI, 0.82-0.91) vs. 0.85 (95% CI, 0.79-0.89). Conclusion: High-resolution 3D MR image acquisition, with single-breath-hold SSFP sequences, gave AVA measurement with low observer variability that correlated highly with those obtained by TTE.

Fast Delineation of the Depth to Bedrock using the GRM during the Seismic Refaction Survey in Cheongju Granite Area (굴절법 탄성파탐사 현장에서 GRM을 이용한 청주화강암지역 기반암 깊이의 신속한 추정)

  • Lee, Sun-Joong;Kim, Ji-Soo;Lee, Cheol-Hee;Moon, Yoon-Sup
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.615-623
    • /
    • 2010
  • Seismic refraction survey is a geophysical method that delineates subsurface velocity structure using direct wave and critically refracted wave. The generalized reciprocal method(GRM) is an inversion technique which uses travel-time data from several forward and reverse shots and which can provide the geometry of irregular inclined refractors and structures underlain by hidden layer such as low velocity zone and thin layer. In this study, a simple Excel-GRM routine was tested for fast mapping of the interface between weathering layer and bedrock during the survey, with employing a pair of forward and reverse shots. This routine was proved to control the maximum dip of approximately $30^{\circ}C$ and maximum velocity contrast of 0.6, based on the panel tests in terms of dipping angle and velocity contrast for the two-layer inclined models. In contrast with conventional operation of five to seven shots with sufficient offset distance and indoor data analysis thereafter, this routine was performed in the field shortly after data acquisition. Depth to the bedrock provided by Excel-GRM, during the field survey for Cheongju granite area, correlates well with the elevation of the surface of soft rock from the drill core and SPS logging data. This cost-effective routine developed for quickly delineating the bedrock surface in the field survey will be readily applicable to mapping of weathering zone in narrow zone with small variation of elevation of bedrock.

An Implementation of the OTB Extension to Produce RapidEye Surface Reflectance and Its Accuracy Validation Experiment (RapidEye 영상정보의 지표반사도 생성을 위한 OTB Extension 개발과 정확도 검증 실험)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.485-496
    • /
    • 2022
  • This study is for the software implementation to generate atmospheric and surface reflectance products from RapidEye satellite imagery. The software is an extension based on Orfeo Toolbox (OTB) and an open-source remote sensing software including calibration modules which use an absolute atmospheric correction algorithm. In order to verify the performance of the program, the accuracy of the product was validated by a test image on the Radiometric Calibration Network (RadCalNet) site. In addition, the accuracy of the surface reflectance product generated from the KOMPSAT-3A image, the surface reflectance of Landsat Analysis Ready Data (ARD) of the same site, and near acquisition date were compared with RapidEye-based one. At the same time, a comparative study was carried out with the processing results using QUick Atmospheric Correction (QUAC) and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) tool supported by a commercial tool for the same image. Similar to the KOMPSAT-3A-based surface reflectance product, the results obtained from RapidEye Extension showed accuracy of agreement level within 5%, compared with RadCalNet data. They also showed better accuracy in all band images than the results using QUAC or FLAASH tool. As the importance of the Red-Edge band in agriculture, forests, and the environment applications is being emphasized, it is expected that the utilization of the surface reflectance products of RapidEye images produced using this program will also increase.