• 제목/요약/키워드: fast SCR reaction

검색결과 9건 처리시간 0.028초

저온 플라즈마 및 암모니아 선택적 환원공정을 활용한 저온 탈질공정의 특성(II) (Characteristics of Low Temperature De-NOx Process with Non-thermal Plasma and NH3 Selective Catalytic Reduction (II))

  • 이재옥;송영훈
    • 공업화학
    • /
    • 제17권4호
    • /
    • pp.414-419
    • /
    • 2006
  • 연소 배기가스 중의 수분, 탄화수소 및 CO가 저온 플라즈마 및 $NH_{3}$ SCR (Selective Catalytic Reduction)공정이 복합된 탈질공정에 미치는 영향에 대한 연구가 수행되었다. 실험결과 일반적인 SCR 반응에 비해 매우 빠른 반응속도를 갖는 fast SCR 반응은 $150{\sim}200^{\circ}C$의 저온조건에서 탈질율의 상승을 가져다주지만, 처리가스 중에 탄화수소가 있는 경우 fast SCR 반응의 역할이 상당히 감소되는 것을 확인할 수 있었다. 이는 저온 플라즈마 반응기에서 부분산화반응을 통해 탄화수소 중 일부가 알데히드로 전환되며, 알데히드는 fast SCR 반응에 있어 중요한 변수인 $NO_{2}/NO_{x}$ 비율에 영향을 주기 때문인 것으로 설명되었다. 한편, 수분 및 CO가 fast SCR 반응에 미치는 영향은 탄화수소에 비해 상대적으로 적음을 확인할 수 있었다.

저온 플라즈마 및 암모니아 선택적 환원공정을 활용한 저온 탈질공정의 특성(I) (Characteristics of Low Temperature De-NOx Process with Non-thermal Plasma and NH3 Selective Catalytic Reduction (I))

  • 이재옥;송영훈
    • 공업화학
    • /
    • 제17권4호
    • /
    • pp.409-413
    • /
    • 2006
  • $150{\sim}200^{\circ}C$의 저온조건에 적용하기 위한 탈질공정으로서 저온 플라즈마 및 암모니아 SCR 공정을 복합시킨 탈질공정에 대한 실험적인 연구가 수행되었다. 실험결과 저온조건에서 일반적인 SCR 반응에 비해 매우 빠른 반응속도를 갖는 fast SCR 반응의 가능성을 확인할 수 있었으며, 효과적인 fast SCR 반응을 위해서는 SCR 반응기에 투입되는 $NO_{2}/NO_{x}$의 비가 0.3~0.5 범위에 있음을 알 수 있었다. 본 연구에서는 저온운전에 따른 암모늄염의 발생문제, 배기가스에 포함되어 있는 탄화수소가 공정에 미치는 영향, 유사한 공정과의 운전전력 비교 등 해당기술을 활용하기 위해 기본적으로 필요한 자료를 제공하고 있다.

Mn/TiO2 촉매를 이용한 일산화질소의 산화반응 특성 연구 (A Study on Characterization for Catalytic Oxidation of Nitrogen Monoxide Over Mn/TiO2 Catalyst)

  • 김기왕;이상문;홍성창
    • 공업화학
    • /
    • 제25권5호
    • /
    • pp.474-480
    • /
    • 2014
  • 본 연구에서는, $Mn/TiO_2$ 촉매를 이용하여 일산화질소의 산화반응 특성에 따른 연구가 수행되었다. $TiO_2$의 물리 화학적 특징 및 활성금속인 Mn과 담체인 $TiO_2$의 interaction에 따라 일산화질소의 산화반응이 서로 다르게 나타남을 관찰하였다. 우수한 NO oxidation 반응을 나타낸 $Mn/TiO_2(A)$의 경우, Mn의 함량이 10 wt%에서 30 wt%로 증가할수록, 공간속도가 낮아질수록, 반응활성이 증가함을 확인하였다. 이러한 결과를 바탕으로 SCR 전단에 $Mn/TiO_2$ 촉매를 사용함으로써, fast-SCR을 유도하여 SCR반응활성이 증진될 수 있을 것으로 판단된다.

디젤엔진의 후처리장치로서 PCD 플라즈마 시스템에 관한 연구 (A Study on the PCD Plasma System as an After Treatment Apparatus in Diesel Engine)

  • 유경현
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.70-77
    • /
    • 2012
  • The selective catalytic reduction(SCR) system used to reduce NOx in diesel engines requires an NO/$NO_2$ ratio of about 1 in exhaust emissions to realize the fast SCR mode at temperatures lower than $300^{\circ}C$. This study investigated the characteristics of a plasma system as a pre-active apparatus for the fast SCR reaction mode of an SCR system. Plasma was generated by the pulse corona discharge(PCD) method with a four-channel wire-cylinder reactor. This study showed that plasma was easily generated in the exhaust gas by the PCD system, and the peak voltage of the normal state condition for plasma generation was generally 12 kV. The PCD system easily converted NO into $NO_2$ at lower temperatures and the NO/$NO_2$ conversion ratio increased with the discharge current for plasma generation. But the PCD system could not convert NO into $NO_2$ at higher engine speeds and higher engine loads due to the lack of oxygen in exhaust gas. The PCD system also activated the diesel oxidation catalysts(DOC) system to reduce CO emissions.

국내 EGR과 SCR 장착 중형트럭 대기오염물질 배출 특성 (Characteristics of Air Pollutants Emission from Medium-duty Trucks Equipped EGR and SCR in Korea)

  • 손지환;김정화;정성운;유흥민;홍희경;문선희;최광호;이종태;김정수
    • 한국분무공학회지
    • /
    • 제21권3호
    • /
    • pp.130-136
    • /
    • 2016
  • NOx and PM are important air pollutants as vehicle management policy aspect. Medium-duty truck is the main source of the pollutants although the vehicle market share is only 3.5%. National emission portion of NOx and PM form the mobile sourece are 14% and 16% respectively. In this study it was investigated that characteristics of air pollutants emission on medium duty truck equipped with EGR and SCR system. Vehicle's test reflected driving cycle on the chassis dynamometer, and applied test cycle was WHVC(World Harmonized Vehicle Cycle) mode. The test cycle include three segments, represent urban, rural and motorway driving. Based on the test results NOx, PM, HC were less emitted form SCR vehicle than EGR vehicle. And CO was less emitted form EGR vehicle than SCR vehicle due to CO oxidation reaction on DPF surface. And most air pollutants reduced as average vehicle speed increased. Pollutants were less emitted on motorway section than urban and rural sections. But highly NOx emission on motorway section was verified according to increased EGR ratio on fast vehicle speed. HC and CO additional emission was identified as 68%, 58% respectively during SCR vehicle's cold engine start emission test. NOx additional emission was detected by 24% on SCR vehicle's condition of engine cold start while not detected on vehicle equipped with EGR. SCR vehicle's additional NOx emission was derived from low reaction temperature during engine cold start condition. medium-duty truck emission characteristics were investigated in this study and expected to used to improve air pollutants management policy of medium-duty truck equipped with SCR & EGR.

백금계 촉매상에서 산화질소(NO)의 산화반응속도에 관한 실험 및 모델링 연구 (An Experimental and Modeling Study on the Oxidation Kinetics of Nitric Oxide over Platinum-based Catalysts)

  • 김영득;정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.71-80
    • /
    • 2012
  • To improve the $NO_X$ conversion over a SCR (selective catalytic reduction) catalyst, the DOC (diesel oxidation catalyst) is usually placed upstream of the SCR catalyst to enhance the fast SCR reaction ($4NH_3+2NO+2NO_2{\rightarrow}4N_2+6H_2O$) using equimolar amounts of NO and $NO_2$. Here, a ratio of $NO_2/NO_X$ above 50% should be avoided, because the reaction with $NO_2$ only ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$) is slower than the standard SCR reaction ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$). In order to accurately predict the performance characteristics of SCR catalysts, it is therefore desired to develop a more simple and reliable mathematical and kinetic models on the oxidation kinetics of nitric oxide over a DOC. In the present work, the prediction accuracy and limit of three different chemical reaction kinetics models are presented to describe the chemicophysical characteristics and conversion performance of DOCs. Steady-state experiments with DOCs mounted on a light-duty four-cylinder 2.0-L turbocharged diesel engine then are performed, using an engine-dynamometer system to calibrate the kinetic parameters such as activation energies and preexponential factors of heterogeneous reactions. The reaction kinetics for NO oxidation over Pt-based catalysts is determined in conjunction with a transient one-dimensional (1D) heterogeneous plug flow reactor (PFR) model with diesel exhaust gas temperatures in the range of 115~$525^{\circ}C$ and space velocities in the range of $(0.4{\sim}6.5){\times}10^5\;h^{-1}$.

바나듐 계열 촉매를 통한 NOx의 NH3-SCR에 관한 실험적 연구 (An Experimental Study on the NH3-SCR of NOx over a Vanadium-based Catlayst)

  • 정희찬;심성민;김영득;정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.20-27
    • /
    • 2012
  • The $NH_3$-SCR characteristics of $NO_X$ over a V-based catalyst are experimentally examined over a wide range of operating conditions, i.e., $170-590^{\circ}C$ and $30,000-50,000h^{-1}$, with a simulated diesel exhaust containing $NH_3$, NO, $NO_2$, $O_2$, $H_2O$, and $N_2$. The influences of the space velocity and oxygen concentration on the standard-SCR reaction are analyzed, and it is shown that the low space velocity and high oxygen concentration promote the SCR activity by ammonia. The best $deNO_X$ efficiency is obtained with a $NO_2/NO_X$ ratio of 0.5 because of an enhanced chemical activity induced by the fast-SCR reaction, while at the $NO_2/NO_X$ ratios above 0.5 the $deNO_x$ activity decreases due to the slow-SCR reaction. The oxidation of ammonia begins to take place at about $300^{\circ}C$ and the reaction products, such as $N_2$, NO, $NO_2$, $N_2O$, and $H_2O$, are produced by the undesirable oxidation reactions of ammonia, particularly at high temperatures above $450^{\circ}C$. Also, $NO_2$ decomposes to NO and $O_2$ at temperatures above $240^{\circ}C$. Therefore, $NO_2$ decomposition and ammonia oxidation reactions deteriorate significantly the SCR catalytic activity at high temperatures.

Effect of oxygen distribution for hot spot and carbon deposition minimization in a methane autothermal reforming reactor

  • Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Yong-Min;Park, Joong-Uen;Lim, Sung-Kwang
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.1996-2000
    • /
    • 2008
  • In autothermal reforming reaction, oxygen to carbon ratio (OCR) and steam to carbon ratio (SCR) are significant factors, which control temperature and carbon deposition into the reactor. The OCR is more sensitive than the SCR to affect the temperature distribution and reforming efficiency. In conventional operation, hydrocarbon fuel, steam, and oxygen was homogeneously mixed and injected into the reactor in order to get hydrogen-rich gas. The temperature was abruptly raised due to fast oxidation reaction in the former part of the reactor. Deactivation of packed catalysts can be accelerated there. In the present study, therefore, the effect of the oxygen distribution is introduced and investigated to suppress the carbon deposition and to maintain the reactor in the mild operating temperature (e.g., $700{\sim}800^{\circ}C$). In order to investigate the effect numerically, the following models are adopted; heterogeneous reaction model and two-medium model for heat balance.

  • PDF

촉각자극에 의한 자율신경계 및 뇌파 반응과 감성 (Emotional Preference Modulates Autonomic and Cortical Responses to Tactile Stimulation)

  • Estate Sokhadze;Lee, Kyung-Hwa;Imgap Yi;Park, Sehun;Sohn, Jin-Hun
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 1998년도 추계학술발표 논문집
    • /
    • pp.225-229
    • /
    • 1998
  • The purpose of the current study was comparative analysis of autonomic and electrocortical responses to passive and active touch of the tektites with different subjective emotional preference. Perspective goal of the project is development of a template for classification of tactile stimuli according to subjective comfort and associated physiological manifestations. The study was carried out on 36 female college students. Physiological signals were acquired by Grass and B10PAC 100 systems with AcqKnowledge III software. Frontal, parietal and occipital EEG (relative power spectrum /percents/ of EEG bands - delta, theta, slow and fast alpha, low and fast beta), and autonomic variables, namely heart rate (HR), respiratory sinus arrhythmia (RSA), pulse transit time (PTT), respiration rate (RSP) and skin conductance parameters (SCL, amplitude, rise time and number of SCRs) were analyzed for rest baseline and stimulation conditions. Analysis of the overall pattern of reaction indicated that autonomic response to tactile stimulation was manifested in a form of moderate HR acceleration, RSP increase, RSA decrease (lowered vagal tone), decreased n and increased electrodermal activity (increased SCL, several SCRs) that reflects general sympathetic activation. Parietal EEG effects (on contra-lateral side to stimulated hand) were featured by short-term alpha-blocking, slightly reduced theta and significantly increased delta and enhanced fast beta activity with few variations across stimuli. The main finding of the study was that most and least preferred textures exhibited significant differences in autonomic (HR, RSP, PTT, SCR, and at less extent in RSA and SCL) and electrocortical responses (delta, slow and fast alpha, fast beta relative power). These differences were recorded both in passive and active stimulation modes, thus demonstrating reproducibility of distinction between most and least emotionally preferred tactile stimuli, suggesting influence of psychological factors, such as emotional property of stimulus, on physiological outcome. Nevertheless, development of sufficiently sensitive .and reliable template for classification of emotional responses to tactile stimulation based on physiological response pattern may require more extensive empirical database.

  • PDF