• 제목/요약/키워드: fast Langmuir Probe

검색결과 8건 처리시간 0.019초

플라즈마 파라메타 측정용 고속 langmuir프로브 구동회로 실현 및 적용 (A study on fast langmuir probe driving circuit for measurement of plasma parameter and its application)

  • 신중흥;고태언;김두환;박정후
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권5호
    • /
    • pp.506-511
    • /
    • 1996
  • This paper deals with an inexpensive, simple and fast Langmuir probe sweeping circuit and its application. This sweeper completes a probe trace in a 1 ms order. Futhermore, the circuit drives a maximum probe voltage of $\pm$30V and has a maximum probe current capability of a few amperes. The plasma parameters are successfully determined using the fast Langmuir probe method.

  • PDF

디지탈 Langmuir Probe에 의한 플라즈마 진단 (Plasma Diagnostics with Digital Langmuir Probe)

  • 연충규;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.145-148
    • /
    • 1989
  • Plasma diagnostics using Langmuir Probe is of wide application because of its simplicity in measurement of electron temperatures and densities. Current methods using simple circuit and analog meters, however, have troubles when they are applied to time-varying or thermal plasmas. To overcome these problems and expand the area of applicability, we have designed fast electronic voltage sweeping circuit in which we can detect digital data. Diagnostics using our digital Langmuir Probe is performed in various kinds of plasmas and the results are shown. Our method can be applied to measuring electron temperature and density of high temperature or time-varying plasmas. And we expect further knowledge of each state of plasma.

  • PDF

오염된 LANGMUIR 탐침의 특성 (CHARACTERISTICS OF THE CONTAMINATED LANGMUIR PROBE)

  • 표유선;민경욱;최영완;이동훈;강광모;황순모;김병철;김준;이수진
    • Journal of Astronomy and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.234-243
    • /
    • 1995
  • 1997년 10월에 발사 예정인 과학 로켓 3호는 고도 160km까지 도달할 것이 예상되므로 한반도 상공의 전리층 E 영역에 존재하는 플라즈마를 직접 측정할 수 있는 좋은 기회를 제공한다. 한펀 플라즈마 측정에 있어서 가장 기본이 되는 검출기인 Langmuir 탑침을 실험실에서 사용하는 방법 그대로 우주 실험에 적용하면 탐침의 오염으로 인해 정확한 플라즈마 실험이 불가능해 진다. 본 논문에서는 로켓용 탑침 제작에 앞서 실험실용 탐침을 제작하여 진공 용기에서 플라즈마 실험을 수행함으로써 탐침의 오염 문제를 연구하였다. 그 결과, 플라즈마의 밀도가 낮을수록 오염에 의한 효과는 적었으며 탐침에 제공되는 쓸기전압의 주파수가 증가할수록 오염에 의한 효과를 줄일 수 있었다. 이러한 연구 결과를 바탕으로 로켓 실험에 적당한 변형된 형태의 Langmuir 탐침을 제안하였다.

  • PDF

Fast Measurement using Wave-Cutoff Method

  • 서상훈;나병근;유광호;장홍영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.30-30
    • /
    • 2011
  • The wave-cutoff tool is a new diagnostic method to measure electron density and electron temperature. Most of the plasma diagnostic tools have the disadvantage that their application to processing plasma where toxic and reactive gases are used gives rise to many problems such as contamination, perturbation, precision of measurement, and so on. We can minimize these problems by using the wave-cutoff method. Here, we will present the results obtained through the development of the wave-cutoff diagnostic method. The frequency spectrum characteristics of the wave-cutoff probe will be obtained experimentally and analyzed through the microwave field simulation by using the CST-MW studio simulator. The plasma parameters are measured with the wave-cutoff method in various discharge conditions and its results will be compared with the results of Langmuir probe. Another disadvantage is that other diagnostic methods spend a long time (~ a few seconds) to measure plasma parameters. In this presentation, a fast measurement method will be also introduced. The wave-cutoff probe system consists of two antennas and a network analyzer. The network analyzer provides the transmission spectrum and the reflection spectrum by frequency sweeping. The plasma parameters such as electron density and electron temperature are obtained through these spectra. The frequency sweeping time, the time resolution of the wave-cutoff method, is about 1 second. A short pulse with a broad band spectrum of a few GHz is used with an oscilloscope to acquire the spectra data in a short time. The data acquisition time can be reduced with this method. Here, the plasma parameter measurement methods, Langmuir probe, pulsed wave-cutoff method and frequency sweeping wave-cutoff method, are compared. The measurement results are well matched. The real time resolution is less than 1 ?sec. The pulsed wave-cutoff technique is found to be very useful in the transient plasmas such as pulsed plasma and tokamak edge plasma.

  • PDF

Dry Etching of BST using Inductively Coupled Plasma

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권2호
    • /
    • pp.46-50
    • /
    • 2005
  • BST thin films were etched with inductively coupled CF$_{4}$/(Cl$_{2}$+Ar) plasmas. The etch characteristics of BST thin films as a function of CF$_{4}$/(Cl$_{2}$+Ar) gas mixtures were analyzed using optical emission spectroscopy (OES) and Langmuir probe. The BST films in CF$_{4}$/Cl$_{2}$/Ar plasma is mainly etched by the formation of metal chlorides which depends on the emission intensity of the atomic Cl and the bombarding ion energy. The maximum etch rate of the BST thin films was 53.6 nm/min because small addition of CF$_{4}$ to the Cl$_{2}$/Ar mixture increased chemical and physical effect. A more fast etch rate of BST films can be obtained by increasing the DC bias and the RF power, and lowering the working pressure.

원격 플라즈마 중합된 메틸메타크릴레이트 필름의 분광학적 분석 (Spectroscopic Analysis of the Remote-plasma-polymerized Methyl Methacrylate Film)

  • 서문규
    • 공업화학
    • /
    • 제32권1호
    • /
    • pp.49-54
    • /
    • 2021
  • 메틸 메타크릴레이트 분자를 전구체로 사용하여 원격 플라즈마 방식으로 중합체를 합성하는 반응에서 플라즈마 출력, 반응 압력 및 직접-간접 플라즈마 방식이 필름의 성장속도 및 화학결합 구조에 미치는 영향을 조사하였으며, FT-IR, XPS 등 분광학적 분석과 Langmvir 탐침을 사용한 플라즈마 특성 진단 결과와 함께 고찰하였다. 플라즈마 출력과 반응 압력이 증가하면 성장속도가 증가하지만 특정 영역을 넘어서면 식각 효과와 잦은 충돌로 인해 활성화 효율이 낮아져 다시 감소하였다. 중합 필름의 FT-IR과 XPS 분석 결과, 필름 내 탄소/산소 조성비는 플라즈마 출력이 커질수록 증가하였으며, 탄화수소성 C-C 탄소 조성비는 증가하는 반면 에스터성 COO 탄소 조성비는 감소하였다. 직접 플라즈마법이 간접 플라즈마법에 비해 필름의 성장속도는 2~5배 빠르지만, 전구체의 분자 구조를 유지하기 위해서는 간접 플라즈마법이 유리함을 확인하였다.

원격 유도결합 플라즈마 시스템의 특성 해석 (Characterization of a Remote Inductively Coupled Plasma System)

  • 김영욱;양원균;주정훈
    • 한국표면공학회지
    • /
    • 제41권4호
    • /
    • pp.134-141
    • /
    • 2008
  • We have developed a numerical model for a remote ICP(inductively coupled plasma) system in 2D and 3D with gas distribution configurations and confirmed it by plasma diagnostics. The ICP source has a Cu tube antenna wound along a quartz tube driven by a variable frequency rf power source($1.9{\sim}3.2$ MHz) for fast tuning without resort to motor driven variable capacitors. We investigated what conditions should be met to make the plasma remotely localized within the quartz tube region without charged particles' diffusing down to a substrate which is 300 mm below the source, using the numerical model. OES(optical emission spectroscopy), Langmuir probe measurements, and thermocouple measurement were used to verify it. To maintain ion current density at the substrate less than 0.1 $mA/cm^2$, two requirements were found to be necessary; higher gas pressure than 100 mTorr and smaller rf power than 1 kW for Ar.

직류 방전과 펄스 직류 방전에 의한 플라즈마 형상 관찰 (Observation of Plasma Shape by Continuous dc and Pulsed dc)

  • 양원균;주정훈
    • 한국표면공학회지
    • /
    • 제42권3호
    • /
    • pp.133-138
    • /
    • 2009
  • Effects of bipolar pulse driving frequency between 50 kHz and 250 kHz on the discharge shapes were analyzed by measuring plasma characteristics by OES (Optical Emission Spectroscopy) and Langmuir probe. Plasma characteristics were modeled by a simple electric field analysis and fluid plasma modeling. Discharge shapes by a continuous dc and bipolar pulsed dc were different as a dome-type and a vertical column-type at the cathode. From OES, the intensity of 811.5 nm wavelength, the one of the main peaks of Ar, decreased to about 43% from a continuous dc to 100 kHz. For increasing from 100 kHz to 250 kHz, the intensity of 811.5 nm wavelength also decreased by 46%. The electron density decreased by 74% and the electron temperature increased by 36% at the specific position due to the smaller and denser discharge shape for increasing pulse frequency. Through the numerical analysis, the negative glow shape of a continuous dc were similar to the electric potential distribution by FEM (Finite Element Method). For the bipolar pulsed dc, we found that the electron temperature increased to maximum 10 eV due to the voltage spikes by the fast electron acceleration generated in pre-sheath. This may induce the electrons and ions from plasma to increase the energetic substrate bombardment for the dense thin film growth.