• Title/Summary/Keyword: farmland soil

Search Result 146, Processing Time 0.025 seconds

Changes in Phytoavailability of Heavy Metals by Application of Limestone in the Farmland Soil nearby Abandoned Metal Mine and the Accumulation of Heavy Metals in Crops (폐금속 광산 주변 농경지 토양에서 석회석 처리에 의한 중금속의 식물유효도 변화 및 작물의 중금속 축적)

  • Yun, Sung-Wook;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.1-9
    • /
    • 2012
  • As topographic characteristics of Korea where 64 % of the national land area is forest and only 17 % is being used as farmland, remediation of farmland contaminated by heavy metals is a considerably important issue. In this study, as an alternative of practically and effectively remediating farmland which was abandoned as its crop plants exceeded maximum residue limit of heavy metals due to mining impact, applicability of stabilization method was examined through the pilot-scale field experiment. Three plots ($L{\times}W{\times}D=3m{\times}2m{\times}0.3m$) were installed at the selected farmland and in plot 1, only soil of the selected farmland was applied, in pilot 2, soil of the selected farmland plus 3 % limestone (w/w) was applied and in pilot 3, soil of the selected farmland plus 3 % limestone was applied and then uncontaminated soil was covered thereon (0.3 m). After that, seeds of radish, Korean cabbage and soybean of which characteristics of edible portions are different were sowed on each plot and cultivated. Afterwards, at a proper harvesting time (app. 80 days later), crop plants and soil were collected and phytoavailability (0.11 M HOAc extractable) of heavy metals in soil and accumulated concentration of heavy metal in edible portion of crop plants were examined. As a result, it was revealed that phytoavailability of heavy metals in soil added with limestone (plot 2) was clearly reduced compared with plot 1 (untreated) and owing to this treatment, accumulated concentration of heavy metals in edible portion of crops was also clearly reduced compared with plot 1. While radish cultivated in plot 1 had exceeded maximum residue limit of agricultural products, in particular, plot 2 using limestone had shown concentration lower than maximum residue limit and this plot had shown little difference with 3 plot where crop was cultivated in uncontaminated soil cover. Therefore, it was considered that for abandoned farmland like the selected farmland, reducing mobility and phytoavailability of heavy metals and reducing crop uptake through stabilization method would be an effective and practical alternative for producing safe agricultural products on a sustained basis.

A Study on Soil Contamination Investigation of Farmland Around Industrial Areas in Northern Gyeonggi Province (경기북부 산업단지 주변 농지의 토양오염도 조사연구)

  • Park, Jin-Ho;Kwon, Kyung-Ahn;Jung, Eun-Hee;Kim, Jae-Kwang;Kim, Ji-Young;Oh, Jo-Kyo
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.5
    • /
    • pp.393-400
    • /
    • 2017
  • This study was investigated on pH, heavy metals, oils and solvents in 34 surface soil samples and the samples are collected at two times for 17 farmland sites around 7 industrial areas in Northern Gyeonggi Province. As a result of pH for soil contamination monitoring network, the range of pH showed 4.4~8.4 and average was 6.3. The range of pH for Agricultural land around industrial area was 6.7~7.5 and average indicated 7.1 that mostly showed neutral condition in this area. he average concentrations of Cu, Pb, Ni, As and $Cr^{6+}$ are lower than Korea soil contamination worrisome levels at region 1 and the mean levels of farmland from the soil quality monitoring network. The average concentrations of Zn, Cd and Hg didn't exceed the soil contamination worrisome levels at region 1 but slightly higher than the mean levels of farmland from the soil quality monitoring network. The heavy metal levels of all samples are within Korea soil contamination worrisome levels at region 1. The results showed that the detected heavy metal concentrations ranged from N.D. to ~32.7% of Korea soil contamination worrisome levels at region 1. BTEX, TPH, TCE and PCE were not detected in all samples and thus the farmland around the industrial areas were free from oils and solvents contamination.

Feasibility Study of Artificial Soil Production with Sludge and Utilization for Agriculture (슬러지를 이용한 인공토양 생산 및 농자재화 가능성 연구)

  • 김선주;윤춘경;이남출
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.5
    • /
    • pp.64-70
    • /
    • 1997
  • Sludge is generated in the process of water and wastewater treatment, and it has been causing various problems environmentally and economically. The firing technology in pottery industry was applied to the sludge treatment, and the final product was called artificial soil. For the production of artificial soil, lime and chabazite was used as additive, and the mixed material was thermally treated in the firing kiln at $300^{\circ}$ temperature for about 15 minutes. The physico-chemical characteristics of the artificial soil was analyzed and it showed that the artificial soil could be used as a soil conditioner for farmland. The concentrations of the toxic heavy metals in the artificial soil were lower than those in the soil quality standard for farmland. It was high in permeability, total nitrogen and total phosphorous concentrations and surface area of the artificial soil compared to the common field soil. Preliminary cost analysis showed that the sludge treatment cost for artificial soil was less than the disposal cost in the current landfill disposal method. This study illustrated that the artificial soil production process can be a feasible alternative for sludge treatment, and produced artificial soil may he applied to farmland without causing significant adverse effect. Further study is recommended for practical application of the system and verification of the longterm effect of the artificial soil on farmland.

  • PDF

Development of USLExls and its Application for the Analysis of the Impact of Soil-Filling Work on Soil Loss (USLExls를 이용한 복토법에 따른 필지 단위 토양유실량 분석)

  • Kim, Sorae;Yu, Chan;Lee, Sang-Whan;Ji, Won-Hyun;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.109-125
    • /
    • 2017
  • This study aimed to develop a parcel-unit soil loss estimation tool embedded in Excel worksheet, USLExls, required for the design of contaminated farmland restoration project and to analyze the impact of the project carried out soil-filling work on soil loss. USLE method was adopted for the estimation of average annual soil loss in a parcel unit, and each erosivity factor in the USLE equation was defined through the review of previous studies. USLExls was implemented to allow an engineer to try out different combinations just by selecting one among the popular formulas by each factor at a combo box and to simply update parameters by using look-up tables. This study applied it to the estimation of soil loss before and after soil-filling work at Dong-a project area. The average annual soil loss after the project increased by about 2.4 times than before on average, and about 60 % of 291 parcels shifted to worse classes under the classification criteria proposed by Kwak (2005). Although average farmland steepness was lower thanks to land grading work, the soil loss increased because the inappropriate texture of the cover soil induced the soil erosion factor K to increase from 0.33 before to 0.78 after the soil-filling work. The results showed that the selection of cover soil for soil-filling work should be carefully considered in terms soil loss control and the estimation of change in soil loss should be mandatory in planning a contaminated farmland restoration project.

Growth and Development of Platycodon grandiflorus under Sensor-based Soil Moisture Control on Open Farmland and Pot Conditions

  • Lee, Ye-Jin;Kim, Kyeong-Soo;Lim, So-Hee;Yu, Young-Beob;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.34 no.6
    • /
    • pp.608-615
    • /
    • 2021
  • Soil moisture control system including soil sensing and automatic water supply chain was constructed on open farmland and pot conditions. Soil moisture was controlled by the system showing over the soil moisture contents except 40% treatment. EC was gradually decreased by increasing cultivation days. On applying this system to control soil moisture, the growth and development characters of the bellflower were improved compared with control, cultivation without the automatic irrigation. Of the growth and development characters, plant height with water treatments was higher than that of control in 1st-year plants. Moreover, numbers of branch were increased by the increased soil moisture on farmland and pot condition. Capsule numbers for seed were best at 20%, 30% soil moisture treatment in 1st-year plants, and 20% to 50% treatment in 2nd-year plants. The construction of automatic soil moisture control system provide fundamental data for plant growth and development on open farmland soil condition.

Water Balance-based Farmland Suitability for Southern-type Garlic Cultivation (난지형 마늘의 농업수리학적 재배적지 분류)

  • Kim, Yong Wan;Hong, Suk Young;Kim, Yi Hyun;Jang, Min Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.19-28
    • /
    • 2012
  • This study carried out farmland suitability analysis for southern-type garlic cultivation considering soil and temperature as well as water deficit conditions. The spatial extent was limited within the area derived by Kim et al. (2012) using just soil and temperature constraints. Daily soil moisture was simulated using a one-layer soil water balance model at a $100{\times}100m$ grid unit, and then annual water deficit was calculated from 2000 to 2010. The farmland suitability was classified as four steps: best suitable, suitable, possible, and low productive. As a result, total area of best suitable or suitable farmland was about 375,900 ha, and Gimje-si and Haenam-gun were appeared as the largest favorable area for southern-type garlic cultivation. The best suitable or suitable area at Haenam-gun, Goheung-gun, Shinan-gun, Namhae-gun, and Muan-gun, major production regions of southern-type garlic, were extracted as 20,187 ha, 13,018 ha, 4,715 ha, 1,319 ha, and 349 ha, respectively. On the other hand, the result showed that the adoption of sprinkler irrigation systems might be critical in cultivating the southern-type garlic at some regions having poor water balance.

Soil Loss Reduction and Stabilization of Arsenic Contaminated Soil in Sloped Farmland using CMDS (Coal Mine Drainage Sludge) under Rainfall Simulation (광산지역 비소오염 경사 농경지 토양의 안정화 및 유실 저감을 위한 석탄광산배수슬러지의 적용성 평가)

  • Koh, Il-Ha;Kwon, Yo Seb;Jeong, Mun-Ho;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.18-26
    • /
    • 2021
  • Soil aggregation begins with flocculation of clay particles triggered by interfacial reactions of polyvalent cation such as Ca2+ and Fe3+, and they are also known as important elements to control the mobility of arsenic in soil environment. The objective of this study was to investigate the feasibility of CMDS (coal mine drainage sludge) for soil loss reduction and stabilization of arsenic-contaminated soil in a 37% sloped farmland under rainfall simulation. The amount of soil loss decreased by 43% when CMDS was applied, and this result was not significantly different from the case of limestone application, which yielded 46% decrease of soil loss. However, the relative amount of dispersed clay particles in the sediment CMDS-applied soil was 10% lower than that of limestone-applied soil, suggesting CMDS is more effective than limestone in inducing soil aggregation. The concentrations of bioavailable arsenic in CMDS amended soil decreased by 46%~78%, which was lower than the amount in limestone amended soil. Therefore, CMDS can be used as an effective amendment material to reduce soil loss and stabilize arsenic in sloped farmland areas.

Farmland Use Mapping Using High Resolution Images and Land Use Change Analysis (고해상도 영상을 이용한 농경지 지도 작성 및 토지이용 변화 분석)

  • Lee, Kyungdo;Hong, Sukyoung;Kim, Yihyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1164-1172
    • /
    • 2012
  • This study aims to make a "farmland use map" using high-resolution images and to analyze the land use change for about 8 years in Goyang, Namyangju, and Yongin cities. We have made a new numerical map named as a farmland use map using high-resolution images taken mostly in 2007 and digital topographical maps in Goyang, Namyangju, and Yongin cities near metropolitan areas to classify farmland use of paddy, upland, plastic film house, and orchard. We also made a land use map by overlaying the farmland use map and the land registration map of each city made in 2007, and compared the land use map made by RDA (Rural Development Administration) in 1999. Paddy areas decreased at a range of 3,000 to 5,000 ha during 8 years and were changed to residential areas in the cities. Upland and orchard areas also showed similar tendency and were changed to residential areas as well. On the other hand, the areas of the plastic film houses in the cities showed an increase or same in size. It is suggested that farmland use map can be broadly used as a base map for various survey projects including soil survey, statistics, and farmland information management.

Estimating Soil Loss in Alpine Farmland with RUSLE and SEDD (RUSLE와 SEDD를 이용한 고랭지 경작지로부터의 토양유실 평가)

  • Cho Hong-Lae;Jeoung Jong-Chul
    • Spatial Information Research
    • /
    • v.13 no.1 s.32
    • /
    • pp.79-90
    • /
    • 2005
  • The purpose of this study is to estimate quantitatively soil loss and sediment yield in alpine farmland. For this purpose, Naerinchon watershed in Gangwon province was selected as our study area and total annual soil loss and sediment yield was estimated respectively by the Revised Universal Soil Loss Equation (RUSLE) model and the Sediment Delivery Distributed (SEDD) model. The results of this study clearly show that dry field areas have significant impact on the total soil erosion and sediment yield compared with other land use. Dry field areas represent only $2.6\%$ of the total area of the watershed but soil loss and sediment yield account for $10.9\%$ and $33.12\%$ of the total amount respectively Especially as with alpine farmland, this result is more clearly shown. These areas account for $1.8\%$ of the entire watershed but contribute to $7.7\%$ and $15\%$ of the total soil loss and sediment yield respectively. From the above results, we can know that alpine farmland is important source of soil loss and sediment yield and it is need to prevent and control. soil erosion from alpine filmland urgently.

  • PDF

Stabilization of As and Heavy Metals in Farmland Soil using Iron Nanoparticles Impregnated Biochar (비소 및 중금속의 식물체 전이감소를 위한 철 나노 입자가 담지된 바이오차의 농경지 토양 안정화제 적용성 평가)

  • Koh, Il-Ha;Kim, Jung-Eun;Park, So-Young;Choi, Yu-Lim;Kim, Dong-Su;Moon, Deok Hyun;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.1-10
    • /
    • 2022
  • This study assessed the feasibility of iron oxide nanoparticles impregnated with biochar (INPBC), derived from woody biomass, as a stabilizing agent for the stabilization of farmland soil in the vicinity of an abandoned mine through pot experiments with 28 days of lettuce growth. The lettuce grown in the INPBC amended soils increased by more than 100% and the concentrations of inorganic elements (Cu, Ni, Zn) decreased by more than 40%. As, Cd and Pb were not transferred properly from the soils to the lettuce biomass. The bioavailability of arsenic and heavy metals in the INPBC amended soils were decreased by 26%~50%. It seems that the major mechanisms of stabilization were arsenic adsorption on iron oxides, heavy metal precipitation by soil pH increasing and heavy metal adsorption on organic matter. These results revealed that the lower bioavailability of the inorganic pollutants in the soils stabilized using INPBC induced lower transfer to the lettuce. Thus, INPBC could be used as an amendment material for the stabilization of farmland soils contaminated by arsenic and heavy metals. However, a pre-review of the chemical properties of the amended soil must be performed prior to applying INPBC in farmland soil because the concentration of the nutrients in the soil such as available phosphates and exchangeable cations (Ca, Mg, K) could be decreased due to adsorption on the surface of the iron oxides and organic matter.