• Title/Summary/Keyword: farm planning

Search Result 272, Processing Time 0.016 seconds

Vegetation Structure and Management Planning of Yongha Gugok in Woraksan National Park (월악산국립공원 용하구곡의 식생구조 및 관리방안)

  • Back, Seung-Jun;Kang, Hyun-Kyung;Kim, Sun-Hwa
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.4
    • /
    • pp.487-497
    • /
    • 2013
  • This study was conducted to suggest vegetation management plan for Gugok landscape maintenance and improvement by deducing the vegetation landscape factors inherent in Yongha Gugok and understanding vegetation structure through the investigate of existing vegetation and plant community structure of Yongha valley in Woraksan National Park. There were broad and flat rocks, natural layered stones, clear water, light stones, stream, valleys, waterfalls, Pinus densiflora and Acer pseudosieboldianum as a result of deducing natural factors on poetry. There were P. densiflora and A. pseudosieboldianum appeared as one of main vegetation landscape elements. The actual vegetation analysis results were as followed. The natural vegetation occupied 67.5% and it was classified as P. densiflora community, Quercus variabilis community, Q. variabilis-P. densiflora community, Q. variabilis-Q. serrata community, Q. serrata community, Q. mongolica community, Q. mongolica-P. densiflora community, Deciduous broad-leaved tree community. The artificial vegetation(18.7%) was classified as Q. serrata community-Larix kaempferi community, Q. mongolica- Castanea crenata community, L. kaempferi community, L. kaempferi-C. crenata community, fruticeta, L. kaempferi-Q. mongolica community. The grassland area(2.0%) was classified as Miscanthus sinensis community, Phragmites communis community, and other areas were classified as landscape tree planting area, farm, orchard, residential area. The representative vegetation were P. densiflora community, Q. variabilis-Q. serrata community, L. kaempferi community, Deciduous broad-leaved tree community in Yongha Gugok. The species diversity index of Shannon was 0.6274~0.9908 on the whole. Yongha Gugok, as a symbol of succession on confucianism and reverence for nature, should be preserved natural valley landscape being clean and wijungchuksa at the end of Joseon Dynasty and Japanese Colonial era. In this historical and cultural Gugok, vegetation landscape management plan is needed to landscape maintenance with P. densiflora community, density control with L. kaempferi community. And it is considered when natural disasters and artificial damages happened, P. densiflora-oriented vegetation restoration plan should be applied in order to restore.

Origin and Source Appointment of Sedimentary Organic Matter in Marine Fish Cage Farms Using Carbon and Nitrogen Stable Isotopes (탄소 및 질소 안정동위원소를 활용한 어류 가두리 양식장 내 퇴적 유기물의 기원 및 기여도 평가)

  • Young-Shin Go;Dae-In Lee;Chung Sook Kim;Bo-Ram Sim;Hyung Chul Kim;Won-Chan Lee;Dong-Hun Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.99-110
    • /
    • 2022
  • We investigated physicochemical properties and isotopic compositions of organic matter (δ13CTOC and δ 15NTN) in the old fish farming (OFF) site after the cessation of aquaculture farming. Based on this approach, our objective is to determine the organic matter origin and their relative contributions preserved at sediments of fish farming. Temporal and spatial distribution of particulate and sinking organic matter(OFF sites: 2.0 to 3.3 mg L-1 for particulate matter concentration, 18.8 to 246.6 g m-2 day-1 for sinking organic matter rate, control sites: 2.0 to 3.5 mg L-1 for particulate matter concentration, 25.5 to 129.4 g m-2 day-1 for sinking organic matter rate) between both sites showed significant difference along seasonal precipitations. In contrast to variations of δ13CTOC and δ15NTN values at water columns, these isotopic compositions (OFF sites: -21.5‰ to -20.4‰ for δ13 CTOC, 6.0‰ to 7.6‰ for δ15NTN, control sites: -21.6‰ to -21.0‰ for δ13CTOC, 6.6‰ to 8.0‰ for δ15NTN) investigated at sediments have distinctive isotopic patterns(p<0.05) for seawater-derived nitrogen sources, indicating the increased input of aquaculture-derived sources (e.g., fish fecal). With respect to past fish farming activities, representative sources(e.g., fish fecal and algae) between both sites showed significant difference (p<0.05), confirming predominant contribution (55.9±4.6%) of fish fecal within OFF sites. Thus, our results may determine specific controlling factor for sustainable use of fish farming sites by estimating the discriminative contributions of organic matter between both sites.