• Title/Summary/Keyword: far-ultraviolet

Search Result 132, Processing Time 0.031 seconds

A bright star catalog observed by FIMS/SPEAR

  • Jo, Young-Soo;Seon, Kwang-Il;Min, Kyoung-Wook;Choi, Yeon-Ju;Lim, Tae-Ho;Lim, Yeo-Myeong;Edelstein, Jerry;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.81.1-81.1
    • /
    • 2015
  • FIMS/SPEAR is a dual-channel far-ultraviolet imaging spectrograph on board the Korean microsatellite STSAT-1, which was launched on 2003 September 27. While the instrument is optimized for the observation of diffuse emissions, it was able to observe a number of bright stars without much contamination from the diffuse background or other faint stars. In this paper, we present a catalog of the far-ultraviolet spectra for 543 stars observed by FIMS/SPEAR during its mission lifetime of a year and a half, covering over the 80% of the sky. Of these, 296 stars were also observed by the International Ultraviolet Explorer (IUE), which covered a wide spectral band including the FIMS wavelength band (1370--1710 A). The stellar spectral types involved in the catalog span from B0 to A3. We compare the new spectra with those of IUE when they are available, and discuss some examples. We also revised the effective area of FIMS that the FIMS stellar spectra are consistent with the IUE spectra.

  • PDF

Bright stars observed by FIMS/SPEAR

  • Jo, Young-Soo;Seon, Kwang-Il;Min, Kyoung-Wook;Choi, Yeon-Ju;Lim, Tae-Ho;Lim, Yeo-Myeong;Edelstein, Jerry;Han, Wonyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.44.1-44.1
    • /
    • 2016
  • In this paper, we present a catalogue of the spectra of bright stars observed during the sky survey using the Far-Ultraviolet Imaging Spectrograph (FIMS), which was designed primarily to observe diffuse emissions. By carefully eliminating the contamination from the diffuse background, we obtain the spectra of 70 bright stars observed for the first time with a spectral resolution of $2-3{\AA}$ over the wavelength of $1370-1710{\AA}$. The far-ultraviolet spectra of an additional 139 stars are also extracted with a better spectral resolution and/or higher reliability than those of the previous observations. The stellar spectral type of the stars presented in the catalogue spans from O9 to A3. The method of spectral extraction of the bright stars is validated by comparing the spectra of 323 stars with those of the International Ultraviolet Explorer (IUE) observations.

  • PDF

OPTICAL DESIGN OF FIMS TYPE FAR ULTRAVIOLET SPECTROGRAPH FOR SPACE OBSERVATION (FIMS 타입의 우주관측용 원자외선분광기 광학설계)

  • SEON KWANG-IL;YUK IN-SOO;RYU KWANG-SUN;LEE DAE-HEE
    • Publications of The Korean Astronomical Society
    • /
    • v.19 no.1
    • /
    • pp.65-70
    • /
    • 2004
  • An imaging spectrograph concept optimized for extended far-ultraviolet emission sources is presented. Although the design was originally developed for FIMS aboard the first Korean science satellite STSAT-l launched on September 27, 2003, no rigorous theoretical background of the spectrograph design has been published. The spectrograph design employs an off-axis parabolic cylinder mirror in front of a slit that guides lights to a diffraction grating. The concave grating provides moderate spatial resolution over a large field of view. This mapping capability is absent in most astronomical instruments but is crucial to the understanding of the nature of a variety of astrophysical phenomena. The aberration theory presented in this paper can be extended to holographic gratings in order to improve the spatial as well as the spectral resolutions.

FUV Images and Physical Properties of the OES region

  • Jo, Young-Soo;Min, Kyung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.69.2-69.2
    • /
    • 2010
  • The far-ultraviolet (FUV) H2 and C IV emission images and spectra of Orion Eridanus Superbubble (OES) is hereby presented. The OES seems to consists of multiple phase through the detection of highly-ionized gas and pervasive neutral hydrogen. The former is traced by hot gas while the latter is traced by cold medium. A spectral image made with H2 fluorescent emission shows that the spatial distribution of hydrogen molecule is well correlated with the dust map. The model spectra was taken from a photodissociation region (PDR) radiation code which find a best suitable parameter such as hydrogen density, gas temperature and incident uv intensity of the radiation field. C IV emission is caused by intermediate temperature ISM about 10^4.5 K~10^6 K. Therefore we could get more clear evidence to reveal the structure of OES. Feature of spectra for the each sub region is also presented and discussed. The data were obtained with the Far-Ultraviolet Imaging Spectrograph (FIMS) and the whole data handling were followed by previous FIMS analysis.

  • PDF

FUV Images and Physical Properties of the Orion-Eridanus Superbubble region

  • Ko, Young-Soo;Min, Kyoung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.71.1-71.1
    • /
    • 2010
  • The far-ultraviolet (FUV) C IV and H2 emission spectra of Orion-Eridanus Superbubble (OES) is hereby presented. The OES seems to consist of multiple phase through the detection of highly-ionized gas and pervasive neutral hydrogen. The former is traced by hot gas while the latter is traced by cold medium. A spectral image made with H2 fluorescent emission shows that the spatial distribution of hydrogen molecule is well correlated with the dust map. The model spectra was taken from a photodissociation region (PDR) radiation code which finds a best suitable parameter such as hydrogen density and intensity of the radiation field. C IV emission is caused by intermediate temperature ISM about 10^5 K. Therefore we could get more clear evidence to reveal the morphology of OES. In this process, the hydrogen density and gas temperature were also estimated. The data were obtained with the Far-Ultraviolet Imaging Spectrograph (FIMS) and the whole data handling were followed by previous FIMS analysis.

  • PDF

Far Ultraviolet Observations of the ${\zeta}$ Ophiuchi HII region

  • Choi, Yeon-Ju;Min, Kyoung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.60.1-60.1
    • /
    • 2014
  • The star ${\zeta}$ Ophiuchi (HD 149757) is one of the brightest massive stars in the northern hemisphere and was widely studied in various wavelength domains. We report the analysis results of far ultraviolet (FUV) observations with other wavelengths for around ${\zeta}$ Ophiuchi. We study the correlation of between multi wavelength observations. We have developed a Monte Carlo code that simulates dust scattering of light including multiple encounters. The code is applied to the present Oph HII region to obtain the geometrical information of dust such as distance and thickness. Also We apply three-dimensional photoionization code to model Wisconsin $H{\alpha}$ Mapper observations of the H II region surrounding the star.

  • PDF

Far-ultraviolet Observations of the Comet C/2001 Q4 (NEAT)

  • Lim, Yeo-Myeong;Min, Kyoung-Wook;Seon, K.I.;Han, W.;Edelstein, J.
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.20.1-20.1
    • /
    • 2011
  • We present the results of far-ultraviolet (FUV) observations of comet C/2001 Q4 (NEAT) obtained with Far-ultraviolet Imaging Spectrograph (FIMS) on board the Korean microsatellite STSAT-1, which operated at an altitude of 700 km in a sun-synchronous orbit. FIMS is a dual-channel imaging spectrograph (S channel 900-1150 ${\AA}$, L channel 1350-1750 ${\AA}$, ${\lambda}/{\Box}{\lambda}$ ~ 550) with large image fields of view (S: $4^{\circ}.0{\times}4'.6$, L: $7^{\circ}.5{\times}4'.3$, angular resolution 5'-10') optimized for the observation of diffuse emission of astrophysical radiation. Comet C/2001 Q4 (NEAT) was observed with a scanning survey mode when it was located around the perihelion between 8 and 15 May 2004. Several important emission lines were detected including S I (1425, 1474 ${\AA}$), C I (1561, 1657 ${\AA}$) and several emission lines of CO $A1{\cap}-X1{\sum}+$ system in the L channel. We estimated QCO = ($2.58\;{\pm}\;0.64)\;{\times}\;1028$ s-1 from the production rate of CO 1510 ${\AA}$. We obtained L-channel image which have map size of $5^{\circ}{\times}5^{\circ}$. The image was constructed for the wavelength band of L-channel (1350-1750 ${\AA}$).We also obtained radial profile of S I, C I, CO with line fitting from central coma.

  • PDF