• Title/Summary/Keyword: far-field ground motion (FFGM)

Search Result 2, Processing Time 0.058 seconds

Soil-structure interaction effects on collapse probability of the RC buildings subjected to far and near-field ground motions

  • Iman Hakamian;Kianoosh Taghikhani;Navid Manouchehri;Mohammad Mahdi Memarpour
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.99-112
    • /
    • 2023
  • This paper investigates the influences of Soil-Structure Interaction (SSI) on the seismic behavior of two-dimensional reinforced concrete moment-resisting frames subjected to Far-Field Ground Motion (FFGM) and Near-Field Ground Motion (NFGM). For this purpose, the nonlinear modeling of 7, 10, and 15-story reinforced concrete moment resisting frames were developed in Open Systems for Earthquake Engineering Simulation (OpenSees) software. Effects of SSI were studied by simulating Beam on Nonlinear Winkler Foundation (BNWF) and the soil type as homogenous medium-dense. Generally, the building resistance to seismic loads can be explained in terms of Incremental Dynamic Analysis (IDA); therefore, IDA curves are presented in this study. For comparison, the fragility evaluation is subjected to NFGM and FFGM as proposed by Quantification of Building Seismic Performance Factors (FEMA P-695). The seismic performance of Reinforced Concrete (RC) buildings with fixed and flexible foundations was evaluated to assess the probability of collapse. The results of this paper demonstrate that SSI and NFGM have significantly influenced the probability of failure of the RC frames. In particular, the flexible-base RC buildings experience higher Spectral acceleration (Sa) compared to the fixed-base ones subjected to FFGM and NFGM.

Response Analysis of RC Bridge Pier with Various Superstructure Mass under Near-Fault Ground Motion (근단층지반운동에 대한 상부구조 질량 변화에 따른 RC 교각의 응답분석)

  • Park, Chang-Kyu;Chung, Young-Soo;Lee, Dae-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.667-673
    • /
    • 2010
  • The near fault ground motion (NFGM) is characterized by a single long period velocity pulse with large magnitude. NFGMs have been observed in recent strong earthquakes, Northridge (1994), Japan Kobe (1995), Turkey Izmit (1999), China Sichuan (2008), Haiti (2010) etc. These strong earthquakes have caused considerable damage to infrastructures because the epicenter was close to the urban area, called as NFGM. Extensive research for the far field ground motion (FFGM) have been carried out in strong seismic region, but limited research have been done for NFGM in low or moderate seismic regions because of very few records. The purpose of this research is to investigate and analyze the seismic response of reinforced concrete bridge piers subjected to near-fault ground motions. The seismic performance of six RC bridge piers depending on three confinement steel ratios and three superstructure mass was investigated on the shaking table. From these experimental results, it was confirmed that the reduction of seismic performance was observed for test specimens with lower confinement steel ratio or more deck weight. The displacement ductility of RC bridge piers in terms of the stiffness degradation is proposed based on test results the shaking table.