• Title/Summary/Keyword: fan effect

Search Result 571, Processing Time 0.026 seconds

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Relationship Between Service Quality Factors of Web Site, Customer Satisfaction and Behavioral Intention (웹 사이트 서비스품질요인, 고객만족 및 행동의도의 관계)

  • Fan, Qing-Ji;Kim, Won-Kyum
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.10
    • /
    • pp.180-188
    • /
    • 2008
  • The purpose of this study is to investigate the impacts of e-service quality factors on customer satisfaction and behavior intention. This study also aims to examine the relationship between the variables of web site service quality variables (reliability, information, design, communication, entertainment, convenience), the customer satisfaction with web site, relationship intention and word of mouth intention. As the results, the study found that factors of web site service quality variables has a positive impact on customer satisfaction. And customer satisfaction also has a positive impact on relationship intention and word of mouth intention. At the same time, it was found that customer satisfaction had an effect on relationship intention through the mediation of word of mouth intention indirectly as well as directly. According to those results, marketing managers should develop different service strategies.

Effects of Fruit By-product Extracts Supplementation on Growth Performance and Nutrient Digestibility in Growing Pigs

  • Park, Jun Cheol;Lee, Se Hun;Park, Sung Kwon;Hong, Joon Ki;Zhang, Zheng Fan;Cho, Jin Ho;Kim, In Ho
    • Journal of Animal Science and Technology
    • /
    • v.55 no.4
    • /
    • pp.257-261
    • /
    • 2013
  • A total of 96 pigs [(Landrace ${\times}$ Yorkshire) ${\times}$ Duroc] with an initial BW of $27.94{\pm}0.92kg$ were used in a 6-week experiment to determine the effects of dietary supplementation with fruit by-product extracts on growth performance and nutrient digestibility in growing pigs. Pigs were randomly allotted to four treatments : 1) CON (basal diet), 2) PRO (CON + 0.5% procyanidin), 3) HES (CON + 0.5% hesperidin), 4) TAN (CON + 0.5% tannin). There were six replications per treatment with four pigs per pen. Supplementation had no effect (p>0.05) on average daily gain, average daily feed intake, and G/F. The apparent total tract digestibility (ATTD) of dry matter and nitrogen was increased (p<0.05) in the HES treatment relative to the PRO treatment. Pigs fed the HES and TAN diets had greater (p<0.05) ATTD of energy than pigs fed PRO diet. The ATTD of ash was greatest (p<0.05) in HES treatments. In addition, the ATTD of calcium was greater (p<0.05) in HES treatments than in CON and PRO treatments. Overall, the results of this study indicated that dietary supplementation with 0.5% fruit by-products did not affect growth performance, but inclusion of 0.5% hesperidin increased nutrient digestibility in growing pigs.

Factors Affecting the Incidence of Angel Wing in White Roman Geese: Stocking Density and Genetic Selection

  • Lin, M.J.;Chang, S.C.;Lin, T.Y.;Cheng, Y.S.;Lee, Y.P.;Fan, Y.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.901-907
    • /
    • 2016
  • The present study investigated stocking density and genetic lines, factors that may alter the severity and incidence of angel wing (AW), in White Roman geese. Geese (n = 384) from two genetically selected lines (normal- winged line, NL, and angel-winged line, AL, respectively) and one commercial line (CL) were raised in four pens. Following common commercial practice, low-stocking-density (LD), medium-stocking-density, and high-stocking-density treatments were respectively administered to 24, 32, and 40 geese per pen at 0 to 3 weeks ($1.92m^2/pen$) and 4 to 6 weeks ($13.2m^2/pen$) of age and to 24, 30, and 36 geese at 7 to 14 weeks ($20.0m^2/pen$) of age. The results revealed that stocking density mainly affected body weight gain in geese younger than 4 weeks, and that geese subjected to LD had a high body weight at 2 weeks of age. However, the effect of stocking density on the severity score of AW (SSAW) and incidence of AW (IAW) did not differ significantly among the treatments. Differences were observed among the genetic stocks; that is, SSAW and IAW were significantly higher in AL than in NL and CL. Genetic selection generally aggravates AW, complicating its elimination. To effectively reduce IAW, stocking density, a suspected causal factor, should be lower than that presently applied commercially.

Growth, Nutrient Utilization and Amino Acid Digestibility of Dairy Calves Fed Milk Replacers Containing Different Amounts of Protein in the Preruminant Period

  • Li, H.;Diao, Q.Y.;Zhang, N.F.;Fan, Z.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.8
    • /
    • pp.1151-1158
    • /
    • 2008
  • This study was designed to examine the effects of different dietary protein levels on growth performance, nutrient utilization, amino acid (AA) digestibility and serum biochemical parameters of preruminant dairy calves. Fifteen healthy new-born calves were randomly allotted to three experimental groups and fed with different milk replacer that contained 18% (LP), 22% (MP) or 26% (HP) of protein. The results showed that final BW, net gain and ADG were significantly higher in the MP group than in LP and HP groups (p<0.05). In addition, the apparent digestibility of CP in the MP group was significantly higher than in the other two groups (p<0.05). The values of N intake and fecal N excretion were significantly increased following the increase of dietary protein content (p<0.05). However, in all three groups of animals, dietary protein content had no significant effect on urinary N concentration (p>0.05). BUN concentration, on the other hand, decreased as calves grew but increased following the increase of dietary CP content. Furthermore, no significant differences in digestibility of amino acids were observed among these three groups of animals (p>0.05). We concluded that calves fed with milk replacer containing 22% of protein had better growth performance and nutrient utilization as compared to animals treated with milk replacer containing either 18% or 26% of protein.

Cathodic Reduction of Cu2+ and Electric Power Generation Using a Microbial Fuel Cell

  • Wang, Zejie;Lim, Bong-Su;Lu, Hui;Fan, Juan;Choi, Chan-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.2025-2030
    • /
    • 2010
  • When $Cu^{2+}$ was used as an electron acceptor, removal of $Cu^{2+}$ was achieved from the synthesized wastewater (SW) in the cathode compartment of a microbial fuel cell (MFC). By addition of $KNO_3$, the different initial pH of the SW showed no effect on the removal efficiency of $Cu^{2+}$. For $Cu^{2+}$ concentration of 50 mg/L the removal efficiencies were found to be 99.82%, 99.95%, 99.58%, and 99.97% for the $KNO_3$ concentrations of 0, 50, 100 and 200 mM, and to be 99.4%, 99.9%, 99.7%, and 99.7% for pH values of 2, 3, 4, and 5, respectively. More than 99% $Cu^{2+}$ was removed for the $Cu^{2+}$ concentrations of 10, 50, and 100 mg/L, while only 60.1% of $Cu^{2+}$ was removed for the initial concentration of 200 mg/L (pH 3). The maximum power density was affected by both $KNO_3$ concentration and initial concentration of $Cu^{2+}$. It was increased by a factor of 1.5 (from 96.2 to 143.6 mW/$m^2$) when the $KNO_3$ concentration was increased from 0 to 200 mM (50 mg/L $Cu^{2+}$), and by a factor of 2.7 (from 118 to 319 mW/$m^2$) when $Cu^{2+}$ concentration was increased from 10 to 200 mg/L (pH 3).

Assessment and comparison of three different air quality indices in China

  • Li, Youping;Tang, Ya;Fan, Zhongyu;Zhou, Hong;Yang, Zhengzheng
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • Air pollution index (API) is used in Mainland China and includes only $SO_2$, $NO_2$ and $PM_{10}$. In 2016, air quality index (AQI) replaced API. AQI contains three more air pollutants (CO, $O_3$ and $PM_{2.5}$). Both the indices emphasize on the effect of a single pollutant, whereas the contributions of all other pollutants are ignored. Therefore, in the present work, a novel air quality index (NAQI), which emphasizes on all air pollutants, has been introduced for the first time. The results showed that there were 19 d (5.2%) in API, 28 d (7.7%) in AQI and 183 d (50.1%) in NAQI when the indices were more than 100. In API, $PM_{10}$ and $SO_2$ were regarded as the primary pollutants, whereas all five air pollutants in AQI were regarded as primary. Furthermore, four air pollutants (other than the CO) in NAQI were regarded as primary pollutants. $PM_{10}$, as being the primary pollutant, contributed greatly in these air quality indices, and accounted for 51.2% (API), 37.0% (AQI) and 52.6% (NAQI). The results also showed that particulate matter pollution was significantly high in Luzhou, where stricter pollution control measures should be implemented.

Effect of Magnetic Field Annealing on Microstructure and Magnetic Properties of FeCuNbSiB Nanocrystalline Magnetic Core with High Inductance

  • Fan, Xingdu;Zhu, Fangliang;Wang, Qianqian;Jiang, Mufeng;Shen, Baolong
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.29-35
    • /
    • 2017
  • Transverse magnetic field annealing (TFA) was carried out on $Fe_{73.5}Cu_1Nb_3Si_{15.5}B_7$ nano-crystalline magnetic core with the aim at decreasing coercivity ($H_c$) while keeping high inductance ($L_s$). The magnetic field generated by direct current (DC) was applied on the magnetic core during different selected annealing stages and it was proved that the nanocrystalline magnetic core achieved lowest $H_c$ when applying transverse field during the whole annealing process (TFA1). Although the microstructure and crystallization degree of the nanocrystalline magnetic core exhibited no obvious difference after TFA1 compared to no field annealing, the TFA1 sample showed a more uniform nanostructure with a smaller mean square deviation of grain size distribution. $H_c$ of the nanocrystalline magnetic core annealed under TFA1 decreased along with the increasing magnetic field. As a result, the certain size nanocrystalline magnetic core with low $H_c$ of 0.6 A/m, low core loss (W at 20 kHz) of 1.6 W/kg under flux density of 0.2 T and high $L_s$ of $13.8{\mu}H$ were obtained after TFA1 with the DC intensity of 140 A. The combination of high $L_s$ with excellent magnetic properties promised this nanocrystalline alloy an outstanding economical application in high frequency transformers.

Tonality Design for Sound Quality Evaluation in Printer (프린터 음질평가를 위한 순음도 설계)

  • Kim, Eui-Youl;Lee, Young-Jun;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.318-327
    • /
    • 2012
  • The operating sound radiated from a laser printer includes tonal noise components caused by the rotating mechanical parts such as gear, shaft, motor, fan, etc. The negative effects of the tonal noise components need to be considered in the process of developing a sound quality index for the quantitative evaluation of the emotional satisfaction in terms of psycho-acoustics. However, in a previous paper, it was confirmed that the Aures tonality did not have enough correlation with the results of jury evaluation. The sound quality index based on loudness, articulation index, fluctuation strength has a little problem in considering the effects of rotating mechanical parts on the sound quality. In this paper, to solve the tonality evaluation problem, the calculation algorithm of Aures tonality was investigated in detail to find the cause of decreasing the correlation. The new tonality evaluation model was proposed by modifying and optimizing the masking effect, loudness ratio, and shape of weighting curve based on the basic algorithm of Aures tonality, and applied to two kinds of operating sound groups in order to verify the usefulness of proposed model. As a result, it is confirmed that the proposed tonality evaluation model has enough correlation and usefulness for expressing the tonalness in the operating sounds of laser printers. In the following paper, this results will be used to model the sound quality index as the input data by using the classification algorithm.

Simulation of Neutron irradiation Corrosion of Zr-4 Alloy Inside Water Pressure reactors by Ion Bombardment

  • Bai, X.D.;Wang, S.G.;Xu, J.;Chen, H.M.;Fan, Y.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.96-109
    • /
    • 1997
  • In order to simulate the corrosion behavior of Zr-4 alloy in pressurized water reactors it was implanted (or bombarded) with 190ke V $Zr^+\; and \;Ar^+$ ions at liquid nitrogen temperature and room temperature respectively up to a dose of $5times10^{15} \sim 8\times10^{16} \textrm{ions/cm}^2$ The oxidation behavior and electrochemical vehavior were studied on implanted and unimplanted samples. The oxidation kinetics of the experimental samples were measured in pure oxygen at 923K and 133.3Pa. The corrosion parameters were measured by anodic polarization methods using a princeton Applied Research Model 350 corrosion measurement system. Auger Electron Spectroscopy (AES) and X-ray Photoelectric Spectroscopy (XPS) were employed to investigate the distribution and the ion valence of oxygen and zirconium ions inside the oxide films before and after implantation. it was found tat: 1) the $Zr^+$ ion implantation (or bombardment) enhanced the oxidation of Zircaloy-4 and resulted in that the oxidation weight gain of the samples at a dose of $8times10^{16}\textrm{ions/cm}^2$ was 4 times greater than that of the unimplantation ones;2) the valence of zirconium ion in the oxide films was classified as $Zr^0,Zr^+,Zr^{2+},Zr^{3+}\; and \;Zr^{4+}$ and the higher vlence of zirconium ion increased after the bombardment ; 3) the anodic passivation current density is about 2 ~ 3 times that of the unimplanted samples; 4) the implantation damage function of the effect of ion implantation on corrosion resistance of Zr-4 alloy was established.

  • PDF